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A methodology is developed by which exact and detailed probabilistic information is obtained for any fault tree.
The methodology, called “Kinetic Tree Theory”, is believed to be a major advancement in the field of reliability and
safety analysis and is expected to have far-reaching ramifications.

The first assumption of Kinetic Tree Theory is that the primary failures, or components, of the fault tree are
independent; one primary failure may occur at any number of places in the fault tree, but those primary failures
which are unique are assumed independent. Inter-dependent primary failures can be handled by extension of the
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of the fault tree are known., These are obtainable in a straightforward manner from the fault tree as is demonstrated.

Fault trees of any structure and of any complexity are handled. General failure and repair distributions are
handled; there is no limitation to these distributions as in other methodologies. Complete probabilistic information
is first obtained for each primary failure of the fault tree, then for each mode failure (critical path), and finally for
the top failure itself. The information is obtained as a function of time, and hence, with regard to reliability and
safety; complete Kinetic behavior is obtained. The expressions developed are in a simple form, and as is shown,
application to yield numerical results is both efficient and straightforward — with an average computer time on the
order of one minute required for a 500 primary failure fault tree (on an IBM 360/75 computer).

1. Introduction

Any failure, whether it be of a reactor protective
system, a rod drive system or the entire reactor power
plant, can be depicted in terms of a fault tree. The
fault tree is a logical diagram of the consequences of
basic failures, called “primary failures”, on the failure
of interest, called the “top failure”*. The top failure
is the final failure of predetermined designation while
the primary failures are the fundamental failures
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example, may be the failure of a reactor protective
system with the primary failures being failures of
basic components of the reactor protective system.
The fault tree traces the top failure to the primary
failure causes; in this sense the fault tree represents a
deductive method of analysis. The primary failures of
the fault tree are failures whose respective causes are
not of concern. The primary failures are thus “basic”

failures, for which failure data is available, and re-
present the limit of resolution of the fault tree. The
construction of fault trees and basic fault tree con-
cepts are described by Haasl [1], Nagel [2], Mearns
[3] and Headington et al. [4]. The purpose of this
article is not the discussion of fault tree concepts and
construction, of which the reader is assumed to have
a basic knowledge. Instead, the evaluation of the con-
structed fault tree is the topic here, which is the sub-
sequent step after construction.

The fault tree, ua'v'mg been constructed, is evalu-
ated to first obtain the critical paths. A critical path,
which we shall term a “mode failure”, is a smallest
set of primary failures such that if all these primary
failures simultaneously exist, then the top failure exists **.

* In some references, “‘primary failure™ is termed “component
failure™, and *‘top failure’ the ““system failure”.
** In some nomenclatures, mode failures are termed “minimal
cut sets”,
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A mode failure is thus a unique way, or mode, by
which the top failure occurs. The (finite) collection
of mode failures obtained from evaluating the fault
tree are thus all the unique modes by which the top
failure occurs. If a mode failure is defined to exist
when all its member primary failures exist, then the
top failure exists if one or more of the mode failures
exist. The top failure can consequently be repre-
sented as the union of the mode failures of the fault
tree; this union is the non-redundant expression of
the fault tree. In terms of fault tree nomenclature, a
mode failure consists of an “‘and gate” attached to-
which are the primary failures constituting this mode
faiture. The top failure can then be represented as an
“or gate” attached to which are the mode failures
(i.e., the and gates). Mode failures are discussed in
more detail by Esary and Proschan [5]. The reader
is assumed to have basic knowledge of the mode
failure, or critical path, concepts.

In an actual evaluation, the mode failures of a
fault tree can be obtained by a number of methods.
The mode failures can be obtained by Boolean re-
duction, using simple rearrangement techniques or
the minterm, maxterm approaches [6]. Testing of
the fault tree can be used, where certain primary
failures are assumed to occur and then the top failure
is checked to determine if it has occurred. This deter-
ministic testing is quite rapid if performed by a com-
puter. Finally, Monte Carlo simulation can be used,
with importance sampling employed to accelerate
the Monte Carlo process. In general, the mode failures
of a fault tree can be obtained in a straightforward
and efficient manner.

With knowledge of the mode failures of the fault
tree, the evaluation can then proceed to obtain the
probabilistic characteristics of the primary failures,
mode failures, and the top failure. Previously, the
evaluation to obtain these probabilities has been done
by Monte Carlo simulation or by Boolean determi-
nistic methods. These evaluations were sometimes
performed on the fault tree itself, in which case the
mode failures were obtained concurrently with the
probabilistic characteristics. In other cases, the eva-
luation was performed after the mode failures were
obtained (i.e., the evaluation was performed on the
non-redundant representation of the fault tree). The
methodology which will be presented here is of the
second type, where it is assumed that the mode

failures have already been determined. (As stated,
the obtainment of the mode failures is quite direct
and actual methods of obtainment are demonstrated
in the applications given later.)

Basically, the Monte Carlo approach is a procedure
in which trials of the fault tree are simulated. In each
trial, primary failures are made to occur and are re-
paired according to their failure and repair probabi-
lities. The top failure is checked at various time
points to determine whether it has occurred. For
every top failure occurrence, a “success” is tallied
in the appropriate tally counter. The average of the
successes over many trials yields an estimate of the
probability of the top failure occurring. The Monte
Carlo simulation is applicable to systems of any com-
plexity and can theoretically handle any prescribed
failure and repair distributions. However, the Monte
Carlo simulation requires a fairly large amount of com-
puter time, and to obtain results in reasonable time,
the failure and repair distributions assigned to the
primary failures must be limited to simple forms.
Further, the Monte Carlo simulation yields statistical
estimates for results, and there is always a disturbing
possibility that these estimates may be in considerable
error, which is not shown by the accompanying error
estimates. This is particularly so since the user must
guess at forcing parameters which influence the esti-
mates obtained.

The Boolean approach analyzes the fault tree in
a Poisson manner by considering the various combi-
nations of primary failure occurrences which are nec-
essary for a top failure occurrence. The probabilities
of these combinations are computed deterministically
and are then tallied to obtain the probability of the
top failure occurring. The Boolean approach has the
advantage of yielding deterministic results without
any associated statistical error. However, to yield
results in a practical amount of time, the Boolean
approach is limited to analysis of simpler trees, where
there are a smaller number of the various primary
failure combinations for which probabilities must be
computed. The severest limitation of the Boolean
approach is that methods have been derived to handle
only very simple failure and repair distributions which
can be assigned to the primary failures. General failure
distributions, such as those which include burn-in and
wear-out, and general repair distributions, such as a
normal repair distribution, cannot be handled.
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To incorporate the generality which is theoretical-
ly possible in the Monte Carlo approach and the deter-
ministic results which are obtainable from the Boolean
approach, the methodology presented here evaluates
the fault tree by means of probability theory and
differential calculus. The methodology, as stated,
assumes the mode failures of the fault tree have been
determined. The methodology also assumes the pri-
mary failures of the fault tree are independent; one
primary failure may appear at any number of places
on the fault tree, however, independence is assumed
with regard to any two or more primary faiiures.
Interdependent primary failures can be handled by a
straightforward extension of the methods which will
be developed here.

In the wedding of probability theory and differ-
ential calculus, the probabilities of the events con-
sidered are proportional to dt, a differential incre-
ment in time. Probabilities of intersections of these
events are of order (dt)2 and hence can be validly
neglected (unlike the Boolean approach which must
consider all intersections since “macroscopic” évents
are considered). Analysis of general, complex fault
trees thus becomes significantly simplified. Further,
general failure and repair distributions can be assigned
to the primary failures; there is no restriction as to
the distributions which can be used. The results ob-
tained with this methodology are exact and are ob-
tained as functions of time. Moreover, detailed,
time-dependent probabilities are obtained not only
for the top failure, but are obtained for every mode
failure and for every primary failure of the fault tree.
Thus, complete knowledge of the top failure, includ-
ing the importance of particular mode failures and
primary failures, is obtained for all time. Finally, as
will be evident from the applications given, the
methodology can be simply applied to yield numer-
ical results in very little computer time. We shall call
this methodology of using probability theory and
differential calculus “Kinetic Tree Theory” since
reliability and safety information is obtained for all
time.

2. Primary failure information

Consider a single primary failure of the fault tree.
Let

A(?) dt = the probability of the failure
occurring in time ¢ to ¢ + dr
given the failure is not exist-
ing at time ¢, (1)

w(f)dt = the probability of the failure
being repaired in time ¢ to
t + dt given the failure is
existing at time ¢ 2

The quantities \(¢) and u(?) are basic data in terms
of fauit tree analiysis or reliability theory and are
dealt with extensively in the literature [7—9]. The
quantity A(¢) is termed the failure rate for the prima-
ry failure, while u(?) is termed the repair rate for the
primary failure. If the primary failure is the failure
of a component, then A(¢) and pu(r) are termed the
component failure rate and component repair rate,
respectively. For any reliability or fault tree study,
the quantities A(¢) and u(r), or their equivalent,
must be known for every primary failure of the fault
tree. Extensive tabulations of A(#) and p(¢) have been
obtained for a wide variety of failures [4, 7], and it
will be assumed that A(¢) and u(t), or their equiva-
lents, are known for every primary failure of the
fault tree.

From A(#) and u(?), other probabilistic quantities
may be obtained which quantify, or characterize,
the particular primary failure. The probability of
the primary failure first occurring in time ¢ to £ + dt
given it is not existing at time ¢', a(¢’, £)dt, is

t
a(t', Hdt = exp[—f N d")\()dr ;
t,

t
f(£, ) =exp(—f Nt dt"); ¢ <t. 4
t’

With regard to repair, the probability that the primary
failure is repaired at time ¢ to # +d¢, given it is existing
at time ¢', b(¢', £)dt, is
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t
b(t', t)dr = exp(—f u(t")dt") w(r)dr ;
[I
r'<re. 5

The quantities a(¢', £) and b(', f) are termed the
first occurrence distribution (or first failure distribu-
tion) and the repair distribution, respectively. The
term f(¢', £) is called the non-occurrence or non-failure

probability. The quantities A\(¢) and u(z), and the quan-

tities a(t’, 1), b(¢', t) and f(¢', t) which are directly de-
rived from A(¢) and u(¢) will all be termed primary
failure data.

Besides the above, there are two other primary
failure characteristics which are essential for any
reliability study or fault tree evaluation. The first
characteristic is the primary failure intensity w(t),
which is defined such that

w(t) = the expected number of times the
primary failure occurs at time ¢
per unit time. (6)

From the definition of w(r), the expected number of
times the primary failure occurs in any interval from
t' tot, w(t', 1), is thus

t
w(t, ) =1 w("yd". (7

t

The quantity w(¢) d¢ is the expected number of times
the failure occurs in time ¢ to ¢ + dt; the failure must
not exist at time ¢ and then must occur in the interval
dr.

From hereon, assume the initial condition that at
¢t =0 the primary failure does not exist. An equation
for w(t) in terms of the data for the primary failure
can then be readily obtained from balance considera-
tions;

t t
w(t)=a(0,t)+ [ dt"w(¢") f de'b(t", t)al(t', 1)
0 "
(8)
The first term on the right hand side of eq. (8) is the
contribution to w(¢) from the first occurrence of the
primary failure. The second term is the contribution

to w(#) from the failure occurring at time ¢”, being
repaired at #', and then reoccurring at time 7.

For a specific first occurrence distribution a(¢’, ¢)
and repair distribution b(¢, ¢), eq. (8) thus deter-
mines the primary failure intensity w(z). For the case
of the failure being non-repairable, for example,
b(t',t)=0and eq. (8) becomes

w(?) =a(0, ¢) ; non-repairable primary
failure . 9)

In general, eq. (8) can be solved using Laplace trans-
form techniques, or simple numerical integration
techniques can be used.

The second primary failure characteristic of inter-
est is the primary failure existence probability ¢(¢);

q(t) = the probability of the primary
failure existing at time ¢. (10)

The non-existence probability, or the probability of
the primary failure not existing at time ¢ is merely

I — g(#). From the definition of A(¢), eq. (1), and
w(?), eq. (6), it is apparent that

w(r)=[1-q(0)] N2), (11)
or
- W)
q(t)-1~7(§. (12)

For a specific failure intensity w(f) and failure rate
(1), q(t) is simply obtainable from eq. (12).

The quantities w(t) and ¢(), along with the basic
data \(¢), u(¢), a(t', 1), b(¢', £) and f(¢', 1), are definitive
functions which characterize the probabilistic behav-
ior of the primary failure for all time. From the pri-
mary failure’s basic data, w(z) and g(¢) can be simply
obtained for every primary failure of the fault tree.
This merely requires using the pertinent data in egs.
(8) and (12) for each primary failure. The character-
istics w(z) and g(#), obtained for every primary failure,
are important in themselves since they show the effects
of repair, maintenance, and changes in environment
(phases) and show these effects as functions of time.
Moreover, with w(t) and g(r) determined for all the
primary failures of the fault tree, the probabilistic
characteristics for the mode failures and for the top
failure can be obtained.
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3. Mode failure information

As stated previously, a mode failure, or critical
path, is a smallest set of primary failures such that if
all these primary failures exist at time ¢ the mode
failure (and top failure) exists at time ¢. Because a
mode failure is simply a “compounded” type of
failure, the same probability characteristics which
were obtained for a primary failure can be obtained
for the mode failure.

Consider a particular mode failure. Let it consist
of n primary failures and let these constituent pri-
mary failures be designated with indices from 1
through #n. Assume the primary failures are indepen-
dent and at r=0 they all do not exist. The first
characteristic obtained for the mode failure will be
the mode failure existence probability Q(7);

Q(t) = the probability that the mode
failure exists at time z. (13)

Since the mode failure exists at time ¢ if and only if
all its primary failures exist at time ¢,

00 =] [4,0. (14)
=1

where q]-(t) is the existence probability for the jth
primary failure of the mode failure (eq. (12)). The
mode failure non-existence probability, P(¢), is then
just 1 — Q(¢) and is the probability of the mode
failure not existing at time ¢; in terms of the consti-
tuent primary failures, P(¢) is the probability of one
or more of these primary failures not existing at
time ¢. Equation (14) allows Q(?), or P(¢), to be
simply determined from the primary failure infor-
mation.

The existence probability Q(¢) is of significance
to the top failure to which the particular mode failure
contributes. If the mode failure exists at time ¢ then
the top failure exists at time ¢. Q(r) is consequently
the probability that the top failure exists at time ¢
by means of this particular mode failure existing at
time t. Examination of the Q(¢) for all the mode
failures (critical paths) of the fault tree will yield
those critical mode failures by which the top failure
is most likely to exist.

The mode failure rate A(¢) is defined in the same

way as for a primary failure;

A(f) dt = the probability of the mode
failure occurring in time ¢
to ¢ +d¢ given the mode fail-

ure does not exist at time ¢. (15)
If
u, = the event of the mode failure
not existing at time ¢ (16)
and
d;4+ 4, = the event of the mode failure
existing at time ¢ +dz, (17)
then
A dt =P(d, g,lu,) - (18)

The symbol “¥’ denotes the probability of an event
and the symbol /> denotes the probabilistic given
condition. Eq. (18) merely states that, given it does
not exist at time ¢, the mode failure occurs in ¢ to
t+drif and only if it is existing at time ¢ + dz. From
basic probability theory, eq. (18) may be written as

P(dr+arty)
A(t)dt D) (19)
where a product of events denotes their intersection,
or simultaneous occurrence.

For the event d,, 4,u, to occur, one or more of
the primary failures must not exist at time ¢ and
these primary failures not existing must all simulta-
neously occur between time ¢ to ¢+ dr. Validly
neglecting orders of d¢ greater than or equal to two,
P(dyy g, t,) Is thus

P, quu) =2 wnde [ Ja. (0
j=1 =1
1#

Each term in the above summation is the probability
of the jth primary failure occurring in f to ¢ +dr

(w;(2) dr) with the remaining primary failures already
existing at time 7. Because primary failures occurring
in a time interval d¢ are considered, only one primary
failure can occur and combinations of more than one
primary failure simultaneously occurring can be validly
neglected.
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The mode failure rate A(¢) is thus obtained since

Plu)=1-0(), (21)

where Q(¢) is the mode existence probability. Eq. (19)
therefore becomes

,~Z=% w;(?) dtgql(t)
_ I#]
A(t) dr = 100 (22)
or
23w ] oo
=1 R
M=o (23)

By use of eq. (23) the mode failure rate is thus readily
obtained from the constituent primary failure infor-
mation.

From the mode failure rate A(¢), the first occur-
rence distribution for the mode failure, A(¢', ), can
be expressed in an analogous manner as for a primary
failure;

t
A, ) =exp[-f A@E")dt"] A(D);
t’
r'<t. (24)

A(?', t) dt is the probability that the mode failure first
occurs at time £ to ¢ + dz given it is not existing at time
t'. As for a primary failure, the non-occurrence pro-
bability for the mode failure F(¢', ) is

t
F(t' t)=exp[—f A d"]; £'<t,  (25)
t’

and is the probability of the mode failure not occur-
ring in the interval from ¢’ to ¢. The probability that
the mode failure occurs in this interval is simply
1 — F(£, ). A(t', ) and F(¢',t) (or 1 —F (¢, 1)) are
important characteristics since they aid in determin-
ing the most critical mode failures, those which are
most likely to occur and cause the top failure to
occur.

The remaining quantity of interest characterizing

the mode failure is termed the mode failure intensity
w(t);

W(¢) = the expected number of times
the mode failure occurs at
time ¢ per unit time. (26)

The integral of W(¢) over any time interval from ¢’ to
t is thus the expected number of times the mode
failure occurs in this time interval. The mode failure
intensity W(¢) is immediately determined from the
definition of the existence probability Q(¢) and the
failure rate A(¢);

W@ =[1-00] A@). (27

The mode failure can occur in ¢ to ¢+ df only if it
does not exist at time ¢ and it then occurs in dr.
Substituting eq. (23) into eq. (27) yields W(¢) in
terms of the constituent primary failure information,

wy=23wo | a0 (28)
j=1 I=1
1#j

The quantities Q(z), A(t), and W(¢), which charac-
terize the mode failure are thus all simply determin-
able from the characteristics w(z) and g(¢) of the pri-
mary failures which comprise the mode failure. The
probabilistic characteristics for the mode failure are
important in themselves since they quantify each
mode failure as functions of time. They show the
effects of repair, maintenance and environmental
conditions on the particular mode failure, or critical
path. The characteristics can be simply determined
for every mode failure of the fault tree by using in
eqs. (14), (23) and (28), the appropriate primary
failures which are members of each mode failure.

In doing so, the critical mode failures, those which
are most likely to cause the top failure to occur, will
be determined, and any corrective action will conse-
quently be directed toward these critical mode fail-
ures. Besides being important in themselves and
yielding the critical mode failures, the mode failure
characteristics are important since they lead to the
determination of the characteristics of the top failure
of the fault tree.
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4. Top failure information

Before venturing into the evaluation of the proba-
bilistic characteristics of the top failure of the fault
tree, some general probability relationships must first
be established. Let U;’=1 A, denote the union of the
nevents 4;, and let 4,4 2reeesA iy denote the inter-
section of the m events. Then, from basic probability
theory [10],

n i-1

P(U 4,)= 294 - 232794, 4)
i=1 i=1 i=2 j=1

n i—-1j-1
+ 22721 P(AAA,) ..
i=3j=2 k=1 /
=114, 4,..4,), (29)

where the symbol “P” again denotes the probability
of an event. As depicted in eq. (29), the probability
of a union of events involves the probabilities of all
the various combinations of the intersections of the
events. It is also shown in basic probability theory
that if these intersections are taken into account such
that intersections of an increasing number of events
are successively considered, then successive upper and
lower bounds are obtained for P(U7_, 4)) until,
finally, its exact value is reached [10].

(U 4)<LiP4). (30)

n i—1

P(U 4)>20P(4) — 2220P(4.4), (31)
S N Y s

n i—-1

2(U 4 <Zl)9>(,4i) - Z;El P(4,4)
i= i= =2 j=

n o i-1j-1
+ 27 P(4,4.4,)
i=3 j=2 k=1 ]
etc. 32)

Eq. (30) is generally the most useful for determining
an upper bound for ?(U;":l A)). 1f, however, the con-
tributions from successively greater intersections be-
come increasingly smaller, then the successive upper
and lower bounds, egs. (31), (32), etc., will approach
each other, and the “bracketing” or “enveloping” of
the true probability will become increasingly tighter.
The upper bounds, egs. (30), (32), etc., will become
successively smaller in value and will approach the
lower bounds, eqs. (31), etc., which successively grow
in value. When applicable, this successive bracketing
of A(UIL, 4)) is a useful method of converging to its
true value.

With these preliminary relationships established,
the evaluation of the characteristics for the top
failure may proceed. Assume the mode failures (criti-
cal paths) of the fault tree are known, and let there
be N such mode failures. Let these mode failures be
indexed from 1 to V. Assume also the initial condi-
tion that at £=0 all the primary failures of the fault
tree are non-existent. The top failure characteristic
most simply obtained is the top failure existence

probability Q(#);

Q(1) = the probability that the top
failure exists at time ¢. (33)

The complement of this quantity, 1 —Q(r), is the
probability that the top failure is not existing at time
t and is sometimes termed the availability of the sys-
tem.

Let

d; = the event that the ith mode
failure exists at time ¢. (34)

From eq. (13),
?d)=0,, (35)

where Qi(t) is the 7th mode failure existence probabi-
lity, which is simply determined from eq. (14), where
the primary failures in this equation are those com-
prising the ith mode failure. Since the top failure
exists if and only if one or more of the mode failures
exist

N
Qo0 =9(il=J1 dy). (36)
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Using the expansion relationship, eq. (29), eq. (36)
may be written as

NI

0y(1) = E P(d) - EZ) P(d,d)

tot (=112 d, . d

V) 37)

Consider a general event d1d2 dm e., the simul-
taneous existence of the m mode failures. Since the
primary failures are assumed independent and since
a mode failure exists if and only if all its primary
failures exist,

H q(t) . (38)

.........

U = the product of unique primary  (39)
failure quantities where the
primary failure occurs in at least
one of the mode failures 1, ..., m.

A particular primary failure quantity thus occurs at
most only once in the product and occurs only if

the primary failure is a member of at least one of

the mode failures denoted above the product symbol.
Computation of P(d; ... d, ), eq. (38), therefore
simply consists of collecting the unique primary
failures which are members of one or more of the m
mode failures (with indices 1, ..., m) and then multi-
plying the existence probabilities ¢/t) of these pri-
mary failures. From cq. (38), eq. (37) thus becomes

N -} +i, )

0,(1) = EQm EZ [ Tao

s N

+1
o (=N n q(1) . (40)

The exact value for Q(¢) can be straightforwardly
determined by using eq. (40) since the products in-
volved (eq. (38)) can be computed by a simple collec-
tion of the unique primary failures in the mode failures
denoted above the product sign. Following this collec-

tion, a simple multiplication of the existence probabi-
lities g(¢) is made. This is particularly rapid when
programmed for a computer. For a fault tree with a
smaller number of mode failures, or critical paths,
eq. (40) will thus yield Q4(¢) in a reasonable amount
of time. Further, for a large class of primary failure
data, the primary failure existence probabilities ¢(r)
and hence QO(r) reach “steady state™, constant
values very quickly. Therefore, for these situations,
QO(I) need only be calculated as a function of time
until it assumes its respective steady state value, or
this steady state value can only be calculated using
the steady state values for the g(¢) of the primary
failures.

For primary failure existence probabilities, ¢(¢),
much less than 1, which is generally the case, the
bracketing procedure (eqs. (30), (31), (32). etc.} is
a particularly efficient method of obtaining succes-
sively tighter envelopes for Q(¢). As the bracketing
procedure is applied to eq. (40), Qo(z‘) is less than
or equal to the first term on the right hand side, is
greater than or equal to the first two terms, and so
forth:

N

04(0 <27 0,(0). (41)

N i-1 +ij

O(t)>Z>Q(f)~lZ;]Z>1 [Ta. @

etc.

The contribution from each successive term involves
a larger number of factors of g(#) in the product.
Therefore, for g(t) < 1, these successive terms be-
come rapidly smaller and can be regarded as higher
order correction terms. For fault trees with many
mode failures, or critical paths, the bracketing can
be carried out only as far as deemed necessary,
giving tight envelopes for Q(r) in a reasonable time;
in fact, the first two brackets, eqs. (41) and (42), are
usually within three significant figures of one another,
giving a tight enough envelope for most computations.
For those situations in which a simple but accurate
approximation is desired for Q(7), use may be made
of a relationship determined by Esary and Proschan
{5]- In their paper, Esary and Proschan show that
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?(£,=0,£,=0, ... f,,=0) >I;I?(fi=o) , (43)

where the f; consists of products of certain indepen-
dent binary random variables (i.e., the random vari-
ables can only assume values of 1 or 0).

Let

u; = the event if the ith mode failure
not existing at time ¢, (44)

where from the definition of the mode failure exis-
tence probability, eq. (13),

?(u,') =1 "Qi(t) . (45)
Taking the complement of eq. (36),

1-0,) =S°(u1u2 e Uy) (46)

the top failure does not exist at time ¢ if and only if
no mode failure exists at time #. Assign binary random
variables to each primary failure such that the variable
equals 1 when the failure exists and equals O when it
does not exist. The event u; then corresponds to the
event f;= 0 where f; is the product of the binary ran-
dom variables of the primary failures which are mem-
bers of the ith mode failure. Therefore, eq. (43) may
be applied to the probability P(u,u, ... u,) to ob-
tain,

N
Pluqguy - upy) > g?(ui) , @n
or
N
Pluyuy ..uy) >g(l -Q,@®) . (48)

Substitution of eq. (46) into eq. (48) results in the re-
lationship desired;

N
om<1-1 Ja-em. (49)

Eq. (49) gives an upper bound and hence a safe and
conservative estimate for Q(). As the mode existence

probabilities Q i(t) can be simply determined from
eq. (14), this upper bound can be simply obtained
for fault trees with any number of mode failures.
Moreover, eq. (49) would be an exact equality if the
mode failures had no primary failures in common,
or equivalently if the events u; were independent. If
the mode existence probabilities Ql.(t) are much less
than 1, which is the usual case, then the events u;
are very nearly independent since the probabilities
P(u;) =1 — Q,(1), for all i, are approximately equal
to 1. In fact, as the Q;(#) approach 0, the upper
bound given by the right hand side of eq. (49) ap-
proaches the true value of Q(#). In general, there-
fore, eq. (49) gives an accurate and also conservative
approximation for Qy(?).

Having obtained Q(?), the characteristic next
determined is the top failure intensity, W();

Wo(t) = the expected number of times the
top failure occurs at time ¢ per
unit time. (50)

Wq(2) dt is the expected number of times the top
failure occurs in ¢ to ¢ + d#, and the integral of Wy(7)
from ¢; to £, is the expected number of times the
top failure occurs in this particular interval of time.
Let

6; = the event of the ith mode failure

occurring in time ¢ to ¢ +dt. &)
From eq. (26)
PO)=WSr)dt, (52)

where W;(f) is the ith mode failure intensity.

For the top failure to occur in ¢ to ¢t +d¢, all the
mode failures must not exist at time ¢ and then one
or more of the mode failures must occur in ¢ to
t +dz. Hence,

N
Wy dt =24 '91 6], (53)

where U{'\;l 8, is the event of one or more of the 0;
occurring and 4 is the event of all the mode failures
not existing at time ¢. From eq. (44),

A=uu, . uy, (54
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where u; is the event of the ith mode failure not
existing at time ¢. A product of events, as in eq. (54),
again denotes their intersection (simultaneous oc-
currence). From basic probability theory,

N N N
P4 _U1 6] =GP[.U1 6,] —?(B ~U1 0,1, (55)
i= = i=

where B is the event of one or more of the mode
failures existing at time ¢;

B=

iC =

d; . (56)
]

J

The event d. is the event of the jth mode failure exist-

ing at time ¢ (eq. (34)). The expression for the top

failure intensity Wy(¢) therefore becomes

N N
Wode=21U 6] -2BYU o). (57)

Eq. (57) is readily understood from consideration of
the individual terms on the right hand side. The first
contribution to Wq(¢)dt, Q[U{ZI 8,1, is the contri-
bution from one or more of the mode failures oc-
curring. Whenever a mode failure occurs, the top
failure occurs. However, the second term P[B Ufil 01.]
must be subtracted from P{ U?;l 6,]. This term
accounts for those cases in which one or more mode
failures occur while other mode failures are already
existing. The top failure cannot occur in these cases
since it is already existing (i.e., has occurred at an
earlier time and was not repaired).

Consider the first term on the right-hand side of
eq. (57). Using the expansion relationship; eq. (29),

N N N i-1
PLU 0] =22908) — 2227 P(0,6.]
=1 Vo= Y =2 =l ]
(58)
ot =DV P(0,0, 0,1

The first term on the right hand side of this equation
is simply the contribution from an individual mode
failure occurring (eq. (52)). The second and proceed-

ing terms involve the simultaneous occurrence of two
or more mode failures; the mode failures considered

in the particular combinations must all not exist at
time ¢ and then must all simultaneously occur in ¢
to r+dz.

The probability of one primary failure occurring in
t to ¢ +dt is equal to w(z) dr and hence is proportional
to dt. The simultaneous occurrence of two or more
mode failures can thus only be caused by one primary
failure occurring, and moreover this primary failure
must be a common member of all those mode failures
which must simultaneously occur. Consider the gener-
alevent 6,6, ...9,,, i.e., the simultaneous occurrence
of the m mode failures. Let there be k unique primary
failures which are common members to all of the m
mode failures; each of these primary failures must be
a member of every one of the mode failures I, ..., m.
If k is zero, then the event 8,6, ... 8, cannot occur
and its associated probability is zero. Assume, there-
fore, k is greater than zero.

If one of these k primary failures does not exist
at t and then occurs in ¢ to r+dt, and all the other
primary failures of the m mode failures exist at ¢
(including the & — 1 common primary failures) then
the event §; ... 8, will occur. The probability of the

eventf, ...0,, is thus seen to be

+1,....m
Pl0,..6, 1 =WE 1, omydt || a().
9

The product symbol in eq. (59) is defined such that

+1,...,m

I—I = the product of unique primary
. failure quantities where the
primary failure occurs in at
least one of the mode failures
I, ..., m but is not a common
member in all of them. (60)

The product in eq. (59) is therefore the product of
the existence probabilities of those primary failures
other than the k¥ common primary failures. Also, a
primary failure existence probability occurs only once
in the product even though it is a member of two or
more mode failures (it cannot be a member of all m
mode failures since these are the k common primary
failures).

The quantity W(t; 1, ..., m) dr accounts for the k
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common primary failures and is defined such that

W(t; 1, ..., m) = the failure intensity for a
mode failure which has as
its primary failures the
primary failures which are
common members to all
the mode failures1, ..., m. (61)

If the m mode failures have no primary failures com-
mon to all of them, then W(¢; 1, ..., m) is defined to
be identically zero;

Wt; 1, ..., m) = 0, no primary failures
common to all m mode
failures. (62)

Examination of the expression for a mode failure
intensity, eq. (28), shows that the intensity consists
of one primary failure occurring and the other pri-
mary failures already existing. This is precisely what
is needed for the kK common primary failures. Com-
putation of W(¢; 1, ..., m) therefore consists of con-
sidering the k£ common primary failures as being
members of a mode failure and using eq. (28) to
calculate W(¢; 1, ..., m), the failure intensity for
this “mode failure”.

Computation of the probability of m mode
failures simultaneously occurring, eq. (59), is there-
fore quite direct. The unique primary failures which
are members of any of the m mode failures are first
separated into two groups, those which are common
to all m mode failures and those which are not com-
mon to all the mode failures. Those primary failures
which are not common are those which do not ap-
pear in every mode failure. A particular primary
failure thus occurs in only one group and occurs
only once in this group. The common group is con-
sidered as a mode failure in itself and W(z; 1, ..., m)
is computed for this group directly from eq. (28). If
there are no primary failures in this common group,
then W(¢; 1, ..., m) is identically zero and computa-
tion need proceed no further (#{8,...6,,] = 0). For
the non-common group, the product of the existence
probabilities for the member primary failures is com-
puted. This product and W(¢; 1, ..., m) are multiplied,
and with the additional factor of dt, P[6...0,,] is
obtained. As will be seen, the factor dr will “cancel

out” in the final expression and will not be needed.
With the general term P[0 ... 6,,,] being deter-
mined, eq. (58) which gives the first term for Wy(t)dt
is subsequently determined.
N N i-1

N
U 4] = El W) dr - 22:21 Wi, j) de
i= i= i=2 j=

+ij N -1 j-1 +ijk
X t+Z>Z> Wt;i,',k dz 1) -
Uq() g (4,7, k) Uq()

+1,..,N

Y w1, mde [ e, 63)

The first term on the right hand side of this equation
is simply the sum of the failure intensities of the in-
dividual mode failures. Each product in the remaining
terms consists of separating the common and uncom-
mon primary failures for the particular combination
of mode failures and then performing the operations
as described in the preceding paragraph. The opera-
tions can be rapidly performed by a computer. More-
over, each succeeding term on the right hand side of
eq. (63) consists of combinations of a larger number
of mode failures simultaneously occurring and in turn
consists of a larger number of products of g(r). There-
fore, each succeeding term rapidly decreases in value,
and as will be elaborated later, the bracketing proce-
dure is extremely efficient when applied to eq. (63).
Eq. (63) consequently determines the first term
for Wy(2) dt, eq. (57), and the second term
P[B UY 1 8;] must now be determined. Expanding

!
this second term yields

N N N i-1
28 U 0, =27 900,8] - 232 P[0, 5]
i=1 i=1 i=2 j=1
ot (D1 20,0, .0, 8] ,(64)

where again

B=

TC o=

1 d; . (56)

Consider a general term in this expansion, ?[6; ... §,,B]
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P16, ... 6,,B] is the probability of the m mode
failures simultaneously occurring in ¢ to ¢+ dr with
one or more of the other mode failures a}reauy
existing at time 7 (event B). Let

WB(I; 1,

om)dt=P[0, .0, B] , (65)

m

where

m) = the rate of occurrence of
the m mode failures 1, ..., m
simultaneously occurring
at ¢ with one or more of the
other mode failures already
existing at time 7. (66)

WB([’ ], ceny

The term “rate of occurrence” simply means “pro-
bability per unit time”. The term Wg(t; 1, ..., m)
should not be confused with the term W(z; 1, ..., m)
of eq. (61). Wg(t; 1, ..., m) is simply used for ease of
notation and refers to the entire event 8, ... 8, B oc-
curring while W(¢; 1, ..., m) refers to the common
primary failures of the modes 1, ..., m occurring.
With the notation of eq. (65), eq. (64) may be re-
written as

N
El Wpg(t; i) dt

”>C >

-1

N
E Wo(t; i, j) de
== B( 7

ot (DY W55 1, N) de (67)

Since the event B involves a union, the general
term in eq. (67) may be expanded into the form

N
Wg(t; 1, ....m) dt =El P10,,...0, d]
P

- Opdidi] (68)

t (DP9, 6,,d,d;5 . dy]

where d; is the event of the ith mode failure existing
at t. Consider now a general term in this expansion,

P8,y ... 6,,d; ...d,]. If this term is determined then
Wg(t; 1, ..., m) dr will be determined and hence

P8 U{Y, 9;] will be determmed

The event 6. 8,,d; ... d, is similar to the event
0y .0, previously analyzed with the exception that
now the mode failures 1, ..., n must also exist at time
t. If a mode failure exists at time ¢ all its primary
failures must exist at time ¢, and these primary fail-
ures cannot occur in ¢ to ¢+ d¢ since an occurrence
calls for a non-existence at ¢ and then an existence at
t+dt. The expression for P[6; ... 8,, d ...d,] is
therefore analogous to the previous expression for
POy ... 0,,] (eq.(59)) with one alteration. Those
primary failures common to all the m mode failures
1, ..., m, which are also in any of the n mode failures
1, ..., n, cannot contribute to W(¢; 1, ..., m) since
they must already exist at time # (for the event
dy ...d,). Hence, these primary failures, common to
all m mode failures and also in any of the n mode
failures, must be deleted from W(z; 1, ..., m) and
must be incorporated in the product of primary
failure existence probabilities

+1,....m

l—I q(1) .

It is therefore seen that #[6 ...0,, d; ... d,] can
be expressed as
Pl6,..0,d...d
[ 1 m“1 n] (69)

I,...,n

., h)dt lnm q(t) .

seee

=Wt 1, ..., m—

The failure intensity W(t; 1, ..., m—1, ..., n) is defined

such that
w(t; 1, ...,m—1,..,n)

= the failure intensity for a mode
failure which has as its primary
failures the primary failures
common to all m mode failures
1, ..., m deleted from which are
those primary failures also in any
of the mode failures 1, ..., n. (70)
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If there are no such primary failures, then W(¢; 1, ...,
m—1, ..., n) is defined to be identically zero;

w; 1, ...,m—1, ... no primary
failures common to
all the mode failures
1, ..., m and also not
in any of the mode
failures 1, ..., n.

(71

The computation of W(z; 1, ..., m—1, ..., n) is again
straightforward. As before, the primary failures
common to all m mode failures 1, ..., m are first
obtained. From this group are deleted those primary
failures also in any of the mode failures 1, ..., n. This
remaining group of primary failures, those in all m
mode failures and not in any of the n mode failures,
is considered a mode failure and eq. (28) is used to
directly compute W(¢; 1, ..., m—1, ..., n) for this
“mode failure”.

The product symbol in eq. (69) is defined such
that

1,..,n

H = the product of unique primary (72)
L..5m  failure quantities, where the
primary failure is a member of
any of the mode failures 1, ..., n
or is a member of the mode fail-
ures 1, ..., m, but is not a common
member of these m mode failures.

The product is simply a product of primary failure
quantities for those primary failures which are
members of any of the mode failures 1, ..., m or

1, ..., n deleted from which are those primary failures
used for W(z; 1, ..., m—1, ..., n). In case of eq. (69),
the product involves primary failure existence pro-
babilities.

The computation P[8 ... 8,, d; ... d,,] is there-
fore straightforward. All the unique primary failures
which are in any of these m+n mode failures are
first collected. If a primary failure occurs in more
than one mode failure it still only appears once in
this collection. From this collection are removed
those primary failures used for W(z; 1, ..., m—1, ..., n),
i.e., those primary failures only in the m mode failures

which are also common to all of them. If there are
no such primary failures, then W(¢; 1, ..., m—1, ..., n)
is identically zero and computation need proceed no
further, (P[0, ...0,, d; ...d, ] =0). If there exists a
group of such primary failures, then this group is
considered a mode failure in itself and eq. (28) is
used directly to calculate its failure intensity
W(t; 1, ..., m—1, ..., n). The existence probabilities
of the remaining primary failures in the original col-
lection are then simply multiplied together. This
product is multiplied by W(¢; 1, ..., m—1, ..., n), and
with an additional factor of d¢, then gives
P16, ...0,,d;...d,] . As will be seen the factor dr
becomes unnecessary in the final computation. The
computation can be rapidly performed by a computer,
and as will be seen, is extremely efficient since the
bracketing procedure can be used.

With the general term P[0 ... 0, d; ... d,] deter-
mined, Wp(t; 1, ..., m) dt of eq. (68) is consequently
determined;

i,

N
Wp(t; 1, ....,m)ydr= ’Z% W(t; 1, ...,m—i) dt H q(t)
l =

1,....m
N -1 i
—2 Z W 1, ...,m—i,j)dt n q(1)
i'=2 j'=1 1,...,m
+o. (73)

Each term for P[B Uf.zl 9,] in eq. (67) is thus deter-
mined and can be expressed as

N i’
Wg(tiiy, s iy) =Z>1 W(t;iyq, ..y in—i') H q(1)
= []renly

N -1 iy
-2 2 Wity i) [ ] a0
i =2]I=1 Pseenly
+..., (74)

where for the first term on the right hand side of eq.
(67), iy, ..., i, becomes i, for the second iy, ..., {,
becomes i, j, and so forth. The computation of each
term in eq. (74) follows the same procedure as was
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described earlier for [0, ...0,,d, ... d,); for example
for the terms within the first summat10n sign, 7y, ..., i,
become the mode failures 1, ..., m and i’ becomes the
mode failures 1, ..., n in the previous discussion.

The second term for W(¢) dt is determined with
the use of eq. (74), and hence the top failure inten-
sity W (?) is finally determined. Summarizing the
expressions obtained,

Wo() = W) — w(e) , (75)

N i1 +i,j

W(r) = EW(r) Z)Z) wie:if) | | ao

N i-1 j-1 +i, j, k
+ Z} W(t;i j, k t
=3 j=2 k=1 (8.4.%) H a“w
_ (76)
N
wiP(n) =Zl> Wp(t;1)
=
N -1
~ 2 2 Wi e (D)
i=2 j=1
WB(t’ i19 “rey ln)
—Z; W(t; 0y, .y iyy—1) H q(t) (78)
N i'-1
AZ% ’Z>1 W(t; iy ... by—i', ') H q()+ ...
=2 7=r A1,

The product symbols and failure intensities in the
above equations are defined by eq. (60), (61), (70),
and (72). The differential d¢ has “cancelled out” in
the above equations, and the symbols W( (¢) and
W(l)(t) have replaced P[B U 1 8;] and ?[UNIB ,
respectlvely (with the cancellatxon of dr).

For fault trees with a smaller number of mode
failures, the above system of equations can be solved
exactly to obtain W(7). The operations needed to

compute the individual terms, which were described
earlier, are straightforward and can be rapidly per-
formed by a computer. If the primary failure quanti-
ites used in the terms reach asymptotic, steady state
values then W (?) need only be computed as a func-
tion of time until its steady state value is reached.
For a large class of problems the steady state values
are reached quickly, simplifying the calculations.

For fault trees with a larger number of mode
failures, the bracketing procedure is an extremely
efficient method of obtaining as tight an enveloping
as desired for W(z). In egs. (76) through (78), an
upper bound can be obtained for W(l)(t) W(z)(t)
or Wg(t;iy, ..., i) by cons1dermgjust the flrst terms
in the respective right hand expressions for these
quantities. Lower bounds can be obtained by con-
sidering the first two terms, new upper bounds can
be obtained by considering the first three terms,
and so forth. Various combinations of these succes-
sive upper and lower bounds will give successive
upper and lower bounds for Wy(t).

As an example of the application of the bracket-
ing procedure, a first (and simplest) upper bound for
Wo(t), Wo(t)yax is given by the relations

WoDmax = W5 Ormax - (79)
where
N
Wi =§ We). (80)

Hence, the first upper bound, Wy(f) < Wy(t)ay i
simply the sum of the individual mode failure inten-
sities. A first lower bound for Wy(2), Wo(O)pin, is
given by the relations

WO(t)min = W%)I)(t)min N w(()z)(l‘)mﬂIX ’ (81)
with
N
W6 (O i =2 WD)
N iJ
-2 Z% wai i Jaw, @2
=z 7
N
W) = g We(ti),, (83)
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N i
“2owei-N ] lew. 9
— L4 ) J 4 \ 4

4 M\Y/
max - =1 i

This lower bound for W(7), Wy(2) = Wo(O) min> ONLY
involves combinations of two mode failures. Consid-
ering more terms in the expressions given by eqs. (76)—
(78), will yield other successive upper and lower
bounds of W(?).

Because the primary failure existence probabilities
q(t) are much less than unity, the successive upper
and lower bounds will rapidly converge to one another.
As an example, the first upper bound and lower bound,
given by eqs. (79) and (81), will generally agree to
within three significant figures, giving a tight enough
envelope for most computations. For scoping calcu-
lations, and in fact for many calculations, the first
upper bound (eq. (79)) is of sufficient accuracy for
a determination of Wy(?);

N
Wo( < 20 W0 (86)

This approximation gives a conservative estimate of
Wo(8), which is desirable, can be simply computed
from the mode failure intensities W(z), and is usually
within three significant figures of the true value of
Wo(®).

The top failure intensity W() is thus determined,
whether it be by computation of its exact value or by
use of the bracketing procedure to obtain successive
upper and lower bounds, one upper and lower bound,
or merely an upper bound. With the failure intensity
W (t) and the existence probability Q(f) determined,
the remaining top failure characteristic, the top failure
rate, is simply obtainable. The top failure rate Ay (?)
is defined in a completely analogous manner to the
primary and mode failure rate;

A(2) dt = the probability that the top
failure occurs in time ¢ to ¢+ dz
given it is not existing at time ¢. (87)

Moreover, the top failure rate is applied in precisely
the same way as the other failure rates. The quantity
t

exp (— f Ao(t') dar’) Ao(’)
0

is the first occurrence distribution for the top failure,
the probability that the top failure first occurs at ¢
per unit time. The quantity,
t
exp(— f 1‘\0(f') ds
0
is the probability that the top failure does not occur
during the interval from O to ¢ and one minus this
quantity is the probability that the top failure does
occur in this interval.
From the definitions of the top failure existence
probability Qo(t) (egs. (33)) and the top failure in-
tensity Wy(f) (eq. (50)), it is apparent that

r

N’

Wo(0) dr = [1- Qo(t)] Ay(D) dr . (88)

For the top failure to occur in ¢ to ¢ +df, Wo(t) de, it
must not exist at time ¢, 1 — Qo(t), and given it does
not exist at time ¢ it must occur in # to £ + dt, Ay(2) dr.
Therefore, quite simply,

Wq(2)
Ag(D) =1_—0_Q()6’ (89)

and with knowledge of W (¢) and Q,(#), A, (?) is
therefore known.

Using the exact values in eq. (89), for WO(I) and
Q¢ (#) will yield the exact value for A (7). Using
upper or lower bounds for both W,(¢) and QO(r).
obtained from bracketing, will yield respective upper
or lower bounds for Ao(t). Obtaining envelopes for
W (2) and Q(¢) will thus yield envelopes for Ay(#).
The simplest upper bound for Ao(t) is obtained by
using the upper bound for Qo(t) from the Esary and
Proschan relation, eq. (49) and the first upper bound
for W, (2) given by eq. (79),

N N
A< 2 ) / g(l —0@).  (90)

This first upper bound is directly obtained from the
mode failure characteristics W{(#) and Q l.(t) and more-
over is also an excellent approximation to the true
value of Ao(t), generally agreeing to within three sig-
nificant figures of the true value. This approximation
is also desirable since it is conservative, being an upper
bound. Using the simplest lower bounds for W(7)
and Q,(7) (egs. (81) and (42)) will give the simplest
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lower bound for A (#) generally agreeing with eq. (90)
to three significant figures.

The top failure rate Ao(t) is thus determined,
whether exactly or by enveloping. The top failure
characteristics Q,(¢), W,(#), and AO(t) are conse-
quently all determined. These characteristics com-
pletely quantify the top failure for all time. The
values of these characteristics quantitatively give the
safety of the system with regard to the occurrence of
the top failure. The response of these characteristics
to design changes or particular repair and maintenance
schemes quantitatively determines the effectiveness
of such changes or schemes. Moreover, response of
these characteristics to changes in environment or
operation is immediately obtained. This response to
system “phases” is an immediate by-product of the
functional dependence of the characteristics on time.
The top failure information obtained therefore en-
compasses general conditions incorporated in the
fault tree, yielding detailed and complete knowledge
for any specific situation. With the use of the bracket-
ing or enveloping procedure, the information is further-
more obtained efficiently and in little time.

5. Applications

To apply the methodology described in the pre-
ceding sections, which we call Kinetic Tree Theory,
three computer programs have been developed, PREP,
KITT-1, and KITT-2. The codes are written in FOR-
TRAN IV for the IBM 360/75 computer. As stated,
the Kinetic Tree Theory methodology requires the
mode failures, or critical paths, of the fault tree in
order to obtain the top failure information. The code
PREP, therefore, first obtains the mode failures from
the fault tree. Having obtained the mode failures,
KITT-1 or KITT-2 is then run to obtain the charac-
teristics for the individual primary failures, mode
failures, and top failure.

The fault tree, having been drawn, is first input in
a coded form to the PREP program. The input to
PREP is quite simple. Each unique primary failure on
the fault tree is assigned an arbitrary unique name.
Also, each unique logical gate is assigned an arbitrary
name. Each gate is then described on an input card;
the card gives the name of the gate, the type of gate
(“AND” or “OR™) and the names of the gates and/or

primary failures attached to the gate. The gates may
be input in any order, PREP determining the neces-
sary logical sequence. Up to 2000 gates and up to
2000 primary failures (or inhibit conditions) can be
handled by PREP.

From the input, PREP constructs the FORTRAN
logical description of the fault tree and then obtains
the unique mode failures (critical paths). The mode
failures are determined either by Monte Carlo simu-
lation or by deterministic testing. The Monte Carlo
simulation uses the power method described by
Nagel [2] . However, this technique is used only to
obtain the mode failures and is therefore quite fast
since it is not used to obtain quantitative information
(the probability characteristics); for example, 500
mode failures can be found for a 400 primary failure
fault tree on the order of 1 minute computer time.
The power method has the feature that the most
important mode failures, those most likely to occur,
are found first. In the deterministic testing method,
combinations of primary failures are made to occur
and the top failure is then checked for its occurrence
in order to obtain the mode failures. Each primary
failure is made to occur singularly to obtain the mode
failures consisting of one primary failure. Combina-
tions of two primary failures are made to simultane-
ously occur to obtain the mode failures consisting of
two primary failures, and so forth. The deterministic
testing method ensures that all mode failures con-
sisting of up to n primary failures are found, where
n is set by the user. Since it is not the purpose of this
paper to delve into the details of determining mode
failures, the virtues of one technique over the other,
or how to combine the two techniques most efficient-
ly to obtain the mode failures, this will not be dis-
cussed. The PREP and KITT code manuals [11]
describe the mechanics and use of the codes in detail,
for the interested reader. It need only be said here
that for a general, complex fault tree, the mode failures
can be obtained in an efficient and complete manner.

Having obtained the mode failures, either KITT-1
or KITT-2 is then run to obtain the probability
characteristics described in the preceding sections. The
KITT codes are particular applications of the general
Kinetic Tree Theory methodology presented earlier
and hence the codes have certain restrictions. For the
codes, the primary failures are restricted to having
constant failure rates (A(¢) = \). With regard to repair
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Fig. 1. Sample fault tree.

of the primary failure, constant repair times, constant
repair rates (u(¢) = i), and non-repairability can be
handled. (For a constant repair time 7, the primary
failure is repaired in exactly a time interval of 7 from
the time of its occurrence, where 7 is the sum of the
detection and actual repair time.) Any mixture of
non-repairable and repairable primary failures can
be handled. Also, any number of inhibit conditions
can be treated *. As in the general methodology, all
primary failures are assumed independent.

KITT-1 is a “single-phase” code; for a given
primary failure, its failure rate and type of repair (or
non-repairability) must remain the same for all time.

* An inhibit condition is a condition, or event, which must
exist in addition to a primary failure in order to cause sub-
sequent, or secondary, failures.

KITT-2 is a “multiphase” code in which the failure
rate and type of repair must be constant in one time
period (phase) but can change in an arbitrary

manner from phase to phase; each primary failure

may have up to 50 unique phases. The input to KITT-1
or KITT-2, besides the mode failures obtained from
PREP, consists of the failure rates and repair data for
the primary failures. If KITT-2 is used, the time
boundaries of the phases, for each primary failure,
must also be specified. The output from the KITT
codes are the primary failure, mode failure, and top
failure characteristics enumerated in the previous
sections. These characteristics are obtained at arbit-
rary time points specified by the user. Since the
mechanics of the codes is not of concern here, they
will not be elaborated upon. The computer codes have
been thoroughly checked, and their use and mechanics
are described in their associated manuals [11].
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As an illustration of the applications of the metho-
dology developed, consider the sample fault tree de-
picted in fig. 1. The symbols, as described by Haasl

[1], denote:
& ‘transfer out’

Q ‘or gate’
A ‘transfer in’

D ‘and gate’
O ‘primary failure’
The phraseology describing failures caused as a con-
sequence of primary failures has been deleted for
brevity (these subsequent failures are usually described
in rectangles). The primary failures have simply been
given indices as their names; the indices associated
with the corresponding primary failures are shown in
fig. 1. Also, the top failure has simply been called
“TOP”.

The gates of this sample fault tree were arbitrarily
named, and the fault tree was input to PREP. The
deterministic testing method was used to obtain all
the mode failures, or critical paths, of the fault tree.
These mode failures obtained are shown in table 1.
In this table, each unique mode failure was given a
separate index to identify it and these indices are
given in the first column. In the second column, the
primary failures which are members of the particular
mode failure are given. The indices of the primary
failures are those used in fig. 1. For example, from
table 1, primary failures 1 and 2 must both simulta-
neously exist for mode failure 1 to exist. Since a
mode failure (critical path) is simply a mode by
which the top failure exists, if primary failures 1 and

Table 1
Mode failures of the sample fault tree

Primary failures
constituting the
mode failure

Mode failure

AN B W =
LT N S R e e
NN W W N

2 both exist, then the top failure exists. That these
are all the unique mode failures of the fault tree can
be verified by simple inspection of the tree. The total
computer time needed by PREP was under 0.01
minutes.

Having obtained the mode failures, KITT-1 was
then used to obtain the characteristics for this fault
tree. The failure rates assigned to the primary failures
and input to KITT-1 are shown in table 2. All the
primary failures were treated as being non-repairable
for this first problem.

Table 2
Primary failure rates A for the sample fault tree

Primary failure A B
index e

2.60-06
2.60-06
2.60-06
3.50-05
3.50-05
3.50-05
5.00-06
5.00-06
8.00-06
8.00-06

S W oo~ A WN -

—

(The nomenclature used in this paper is such that
2.60—06 means 2.60 X 10¢.) The primary failure
and mode failure characteristics obtained form KITT-1
are shown in table 3. The top failure characteristics
obtained are shown in table 4. The characteristics
were obtained for 11 points in time (¢), equally
spaced at 1000 hours, however only 7 of these time
points are given in these tables.

The characteristics shown in table 3 for primary
failure 1 are also those for primary failures 2 and 3
since these primary failures all have the same failure
rates (2.60—06 hr ™'); in an analogous manner the
characteristics shown for primary failure 4 are also
those of primary failures 5 and 6. In table 3, the
primary failure rates A are merely those read in and
are printed again for convenience. The characteristics
for primary failures 7 through 10 are not given since
these primary failures are not members of any of the
mode failures and hence in no way affect the top
failure. It can be simply shown from the preceding
theoretical discussions that for a non-repairable
primary failure;
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Table 3
Primary failure and mode failure characteristics for the non-repairable sample tree
Characteristics for primary failure 1 Characteristics for primary failure 4
t A(D) w(tz AD w(tz
(X10° hr) (hr ™Y (™) a® () (™) ()
0.0 2.60-06 2.60-06 0.0 3.50-05 3.50-05 0.0
1.0 2.60-06 2.59-06 2.60-03 3.50-05 3.38-05 3.44-02
2.0 2.60-06 2.59-06 5.19-03 3.50-05 3.26-05 6.76-02
3.0 2.60-06 2.58-06 7.77-03 3.50-05 3.15-05 9.97-02
4.0 2.60-06 2.57-06 1.03-02 3.50-05 3.04-05 1.31-01
5.0 2.60-06 2.57-06 1.29-02 3.50-05 2.94-05 1.61-01
10.0 2.60-06 2.53-06 2.57-02 3.50-05 2.47-05 2.95-01
Characteristics for mode failure 1 Characteristics for mode failure 4
t AD) w() o A2) W() o)
(X10%hr) (hr™t) (hr') (hr ) (e’
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.35-08 1.35-08 6.74-06 2.33-06 2.32-06 1.18-03
2.0 2.68-08 2.68-08 2.69-05 4.43-06 4.41-06 4.57-03
3.0 4.01-08 4.01-08 6.04-05 6.34-06 6.28-06 9.94-03
4.0 5.32-08 5.32-08 1.07-04 8.09-06 7.95-06 1.71-02
5.0 6.63-08 6.63-08 1.67-04 9.68--06 9.43-06 2.58-02
10.0 1.30-07 1.30-07 6.59-04 1.60-05 1.46-05 8.72-02
Table 4
The top failure characteristics for the non-repairable sample tree
Exact results Upper bounds Q¢(1) envelopes MC Q¢()
t Ag(® Wo(6) AB@) W)
X10°m) () (e ) Qo® e e 2o 20Omin  20Omax  Qo®
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 6.80—-06 6.77-06 3.49-03 7.04-06 7.01-06 3.56-03 3.45-03 3.57-03 3.47-03
2.0 1.26-05 1.24-05 1.32-02 1.35-05 1.33-05 1.37-02 1.29-02 1.38-02 1.30-02
3.0 1.76-05 1.71-05 2.80-02 1.95-05 1.90-05 2.97-02 2.70--02 3.00-02 2.85-02
4.0 2.19-05 2.09-05 4.70-02 2.53-05 2.40-05 5.06-02 4.48-02 5.15-02 4.68-02
5.0 2.57-05 2.39-05 6.95-02 3.08-05 2.85-05 7.58-02 6.54-02 7.78-02 6.90-02
10.0 3.94-05 3.10-05 2.12-01 5.81-05 4.41-05 2.41-01 1.86—-01 2.64-01 2.08-01
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r
a®) =1 w(t'ydt', 1)
0
t
qg(t)=1— exp(— f >\(t') dt') . (92)
0

Hence, ¢q(¢) in table 3 is also equal to the expected
number of times the primary failure will occur to
time ¢ (eq. (91)) and in addition is also equal to the
probability that the primary failure will occur to
time 7 (eq. (92)).

The characteristics for mode failure 1 in table 3
are also those for mode failures 2 and 3 since these
mode failures are all composed of similar primary
failures. Likewise, the characteristics for mode failure
4 are also those of mode failures 5 and 6. As for a
non-repairable primary failure, for a mode failure
consisting of non-repairable primary failures,

r
Q=1 Wir)adr (93)
0

and
t
Q)=1—exp(—f A')dr). (%94)
0

Q(¢) in table 3 thus equals the accumulated number of
occurrences of the mode failure and also equals the
occurrence probability for the mode failure.

In table 4, which gives the top failure character-
istics, the upper bounds Aj(#), Wy(t), and Qf(¢) are
those given by eqs. (90), (86), and (49), respectively.
It was stated that these bounds are excellent approx-
imations for the respective true values when the pri-
mary failure existence probabilities are near zero, and
in fact these bounds approach the true values as the
existence probabilities approach zero. This is evident
from the table since these upper bounds depart from
the exact values as ¢ increases. Even at =10 hr,
when the maximum primary failure existence pro-
bability equals 2.95—01 (for primary failure 4) which
indeed is not near zero, the upper bounds are still
fairly good approximations. The Qg(¢) envelopes in
table 4, 0 (9) . and Q (7). ;. are those given by
eq. (41) and (42), respectively. The first two brackets
for Wy(#), eqs. (79) and (81) behaved in an analogous
manner to the Qq(¢) envelopes. As was discussed, the

bracketing procedure gains in efficiency as the prima-
ry failure existence probabilities approach zero. How-
ever, even the first two brackets for Qq(#) are still fairly
close to one another at t = 10* hr. Taking more
brackets (considering more terms in eqgs. (40), and
(76)—(78)) would yield tighter envelopes; in fact, the
exact values of table 4 were obtained by considering

all terms in these equations.

Finally, in table 4, a Monte Carlo run was made
to verify the results from the KITT code. The column
MC Q(¢) gives these results; all the values obtained
had errors (standard deviations) less than 1.5%. The
Monte Carlo approach is quite time-consuming, but
if run properly also gives the “exact” answers —
within the statistical errors associated with a Monte
Carlo result. The methodology presented here, of
course, has the advantage of obtaining the exact
answers with no statistical error and in little computer
time. In a large number of problems, however, the
Monte Carlo approach was used to verify this metho-
dology. As exemplified in table 4, the Monte Carlo
results always agreed with the results obtained by the
KITT codes.

The output in tables 3 and 4 demonstrates the
complete and detailed type of information yielded by
the Kinetic Tree Theory methodology. Even though
a “sample” fault tree was analyzed, the tree being
quite simple in its logic, the same type of information
will be obtained regardless of the complexity and size
of the fault tree. Moreover, the information is self-
explanatory and *“‘physical” in nature. For example,
for mode failure 1 of the sample fault tree (table 3),

t
1 —exp(—f A()dr')
0
which in this case equals Q(¢) simply gives the proba-
bility that the mode failure will occur at all to time ¢;
t

I wehadr

0
again in this case equalling Q(¢) simply gives the
number of times the mode failure will occur; and
Q(r) simply gives the probability of the mode failure
existing at time ¢. In addition, the characteristics
A(?) and W(z) give the pointwise behavior of this
mode failure. This same information is obtained for
each primary failure, each mode failure or critical
path, and finally for the top failure itself. Since the
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Characteristics for primary failure 1

Characteristic for primary failure 4

w(t)

AN
W)

t
2 1-f0,f 4 t w(0, 1) 1-£0,n
(X10° hy  (hr 1) q(t w(0, ) 0,0 (e Y q(t) 1l
0.0 2.60-06 0.0 0.0 0.0 3.50-05 0.0 0.0 0.0
0.003 2.60-06 7.80-06 7.80-06 7.80-06 3.50-05 1.05-04 1.05-04 1.05-04
0.006 2.60-06 1.56-05 1.56-05 1.56-05 3.50-05 2.10-04 2.10-04 2.10-04
0.024 2.60-06 6.24-05 6.24-05 6.24-05 3.50-05 2.10-04 8.40-04 8.40-04
1.0 2.60-06 6.24-05 2.60-03 2.60-03 3.50-05 2.10-04 3.50-02 3.44-02
2.0 2.60-06 6.24-05 5.20-03 5.19-03 3.50-05 2.10-04 7.00-02 6.76—-02
10.0 2.60-06 6.24-05 2.60-02 2.57-02 3.50-05 2.10-04 3.50-01 2.95-01
Characteristics for mode failure 1 Characteristic for mode failure 4
t w(t) W(r)
(X 10 hr) (s Y om w0, 1) 1-F(0,0 (he 1) o w(0,1) 1-F(0,1)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.003 4.06-11 6.08-11 6.08-11 6.08-11 7.35-09 1.10-08 1.10-08 1.10-08
0.006 8.11-11 2.43-10 2.43-10 2.43-10 1.47-08 4.41-08 4.41-08 4.41-08
0.024 3.24-10 3.89-09 3.89-09 3.89-09 1.47-08 4.41-08 3.09-07 3.09-07
1.0 3.24-10 3.89-09 3.21-07 3.21-07 1.47-08 4.41-08 1.46-05 1.46—05
2.0 3.24-10 3.89-09 6.45-07 6.45-07 1.47-08 4.41-08 2.93-05 2.93-05
10.0 3.24-10 3.89-09 3.24-06 3.24-06 1.47-08 4.41-08 1.47-04 1.47-04
Table 6
The top failure characteristics for the repairable sample tree
t Ap(t) Wyl
X 10% ) ) (h?—l) 0] W0, 1) 1-Fy(0, 0
0.0 0.0 0.0 0.0 0.0 0.0
0.003 2.22-08 2.22-08 3.33-08 3.33-08 3.33-08
0.006 4.43-08 4.43-08 1.33-07 1.33-07 1.33-07
0.024 4.50-08 4.50-08 1.44-07 9.37-07 9.37-07
1.0 4.50-08 4.50-08 1.44-07 4.49-05 4.49-05
2.0 4.50-08 4.50-08 1.44-07 8.99-05 8.99-05
3.0 4.50-08 4.50-08 1.44-07 1.35-04 1.35-04
4.0 4.50-08 4.50-08 1.44-07 1.80-04 1.80-04
5.0 4.50-08 4.50-08 1.44-07 2.25-04 2.25-04
10.0 4.50-08 4.50-08 1.44-07 4.50-04 4.50-04
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information is obtained as a function of time, the
complete history of each type of failure is determined.
This time dependency is quite important. For exam-
ple, the importance of the mode failures may change
in time — a particular mode failure may be of little
importance at one time and yet, at a later time may
become the most probable mode by which the top
failure will occur.

The detailed quality of the information obtained
makes it apparent for the sample fault tree that mode
failures 4, 5 and 6 are the most probable modes by
which the top failure will occur, being 100 times
more probable than mode failures 1, 2 and 3. If the
probability of the top failure occurring was deemed
too high, then design modifications would be
centered around these most probable mode failures.
Also, if the top failure had occurred, the primary
failures in these most probable mode failures should
be those first checked as to the causes of the top
failure — the information obtained thereby giving
optimal repair schemes.

The information obtained also makes apparent
the effect of repair with regard to the fault tree. For
example, for the sample fault tree, if primary failures
1, 2, and 3 could be detected and repaired in 24 hours
and primary failures 4, 5, and 6 could be detected and
repaired in 6 hours then the sample fault tree would
have the characteristics shown in tables 5 and 6. For
these tables, the input to KITT-1 was the same as
for the non-repairable tree (the same primary failure
rates and mode failures were used) except that each
primary failure was assigned a constant detection plus
repair time as given above.

In table 5, w(0, ¢) equals the accumulated number
of times the primary failure occurs to time ¢

t
w0, )=J w(t)dr .
0

Also, 1 — {0, 1) equals the probability that the primary
failure will occur at all to time ¢
t
1—f(0,8)=1—exp(—J A()dt) .
0
Analogous nomenclature is used for the mode failures;
t
w,t) = wHadr ,
0
and

t
1-F(0,0)=1—exp(— [ A(t)dr).
0
These quantities are no longer equal to the respective
existence probabilities (q(¢) or Q(f)) since the primary
failures are now repairable. The failure rates, A(z) for
the primary failures and A(¢) for the mode failures,
are not given in table 5 since they have the same value,
to three significant figures, as the corresponding fail-
ure intensity (w(f) or W(t)). Again, primary failures
1, 2, and 3 and primary failures 4, S and 6 have the
same characteristics; also mode failures 1, 2, and 3
and mode failures 4, 5, and 6 have the same charac-
teristics.
In table 6, Wy(0, ) is the accumulated number of
times the top failure occurs to ¢
t
Wo(0,0) =] Wy(ehdr ,
0

and 1 — F(0,¢) is the probability of the top failure
occurring at all to time ¢
t

1-F0,0)=1—exp(~f AO(t') dr'y .
0

Since the characteristics have a different behavior
when the primary failures are repairable, a number

of different time points are given in table 6 (and
table 5). It is noted that since the maximum repair
time for a primary failure is 24 hours, the top charac-
teristics A (2), Wo(t), and QO(t) remain constant for
t > 24 hr (i.e., assume their steady state, asymptotic
values). This achievement of steady state is also
exhibited by the analogous mode failure and primary
failure characteristics (table 5). The upper bound
approximations for Ay(7), W(7), and Qo(t) (egs. (90),
(86), and (49), respectively) are not given in table 6
since they agreed to four significant figures with the
exact values given in the table. Similarly, the first two
envelopes given by eqs. (41) and (42) or by eqs. (79)
and (81) are not given since they agreed with each
other, and with the respective exact value, to four
significant figures. Because the primary failure exis-
tence probabilities are now near zero (table 5), and
remain there for all time, the upper bounds and the
bracketing procedure are extremely accurate and effi-
cient — for all the time points. In general, regardless
of the size and complexity of the fault tree, the
simple upper bounds are accurate *“‘scoping’ approxi-
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mations, and the bracketing procedure is an extremely
efficient method of converging to the exact values.

From tables S and 6, and comparing with tables
3 and 4, the detailed effect of repair is immediately
made obvious. How the primary failure characteristics
respond, how the mode failures (critical paths) change
in importance, and how the top failure characteristics
change in value are all made evident. Different repair
times could be assigned to determine their effect, or
only certain primary failures could be repairable while
others would remain non-repairable. Similar studies
could be made by varying the primary failure rates
(e.g., what is the effect of using more reliable compo-
nents). In the KITT-2 code, where the primary failures
may have phases, the effect of different environments
could be analyzed. These comparative studies, or sen-
sitivity studies, are now completely feasible because
of the detailed results obtained and the small computer
times needed. For the above two problems, the total
computer time needed for the PREP and KITT codes
was under 0.08 minutes. In general, for large fault
trees (500 primary failures) the total time needed is
on the order of 1 minute for each case studied (inde-
pendent of the number of time points used).

The above sample studies serve to demonstrate the
amount of information obtained for any fault tree
from the “Kinetic Tree Theory” methodology devel-
oped here. The PREP and KITT codes are presently
being used in a routine manner for the reliability and
safety analyses performed at the National Reactor
Testing Station. Fault trees consisting of up to 1800
primary failures and 1500 gates have been evaluated
using the PREP and KITT codes. The information ob-
tained for these fault trees was exactly the same as that
obtained for the sample studies; time-dependent char-
acteristics were obtained for each primary failure, for
each mode failure and for the top failure. The fault
trees consisted of various mixtures of non-repairable
and repairable primary failures; failure rates used for
the primary failures ranged from 1.0—10 hr'! to 1.0—
02 hr'! and repair-plus-detection times ranged from
one hour to 1.0+04 hr. For these fault trees, the pri-
mary failure, mode failure and top failure characteris-
tics were obtained at up to 200 time points arbitrarily
spaced, the spacing between time points ranging from
0.1 hr to 1.0+03 hr. In addition, multiphase fault trees
have been routinely evaluated, with the number of
phases, ranging from 2 to 45. The average total com-

puter time needed to obtain the complete information
described, for 100 time points, was on the order of
one minute for a 500 primary failure tree.

Reactor scram systems, pressure reduction sys-
tems, and isolation containment systems are examples
of the systems for which fault trees were evaluated.
The evaluation of these fault trees was used to quanti-
tatively determine the safety and reliability of the
respective systems. Comparative studies were made
to determine the effects of certain design changes,
to determine optimal maintenance intervals, and to
determine optimal monitoring and repair schemes.
Because the methodology developed here readily
lends itself to being automated, as exemplified by the
PREP and KITT codes, these evaluations and compa-
rative studies were extremely simple to carry out. Be-
cause of the speed and ease with which results are ob-
tained, and because of the detailed, time-dependent
information obtained, experience in applying the
Kinetic Theory methodology has verified its value
as an extremely useful and simple tool for evaluating
any fault tree — regardless of its complexity, size,
type of primary failure repair used, or the number of
phases assigned for which the primary failure data
differs.

6. Summary and conclusions

A methodology, termed “Kinetic Tree Theory”, is
presented by which any fault tree can be evaluated.
The basic approach taken in Kinetic Tree Theory is
that whether it be for a primary failure, a mode
failure, or for the top failure, complete information
is obtained from three characteristics — the existence
probability, the failure rate, and the failure intensity.
When these three characteristics are determined for
a particular entity, that entity being a primary failure,
a mode failure, or the top failure, then subsequent
probabilistic information, both pointwise and cumu-
lative, is obtained for all time for this entity.

In the Kinetic Tree Theory methodology, the
probabilistic characteristics are determined by using
probability analysis on events which occur at a
general time ¢ or which occur in a general increment
of time, ¢ to ¢+ dr. Complete information is thus ob-
tained for all time, and this information is obtained
simply since numerous combinations involving orders
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of (d£)? can be neglected. The primary failure charac-
teristics which are not given as data are determined
from balance considerations. The balance considera-
tions incorporate general failure and repair distribu-
tions. The mode failure characteristics are then deter-
mined from the primary failure characteristics; this
determination assumes knowledge of the primary
failures constituting the mode failure and assumes
independence of these primary failures. The top
failure characteristics are finally determined from

the mode failure information; this information in-
volves knowledge of the mode failures constituting
the top failure.

Thus, given the mode failures (critical paths) of
the fault tree, complete, time-dependent information
is obtained for the top failure by proceeding from
the primary failures to the mode failures and finally
to the top failure. In proceeding in this stepwise
fashion, complete time-dependent information is
also obtained for each primary failure and mode
failure of the fault tree. In application of the Kinetic
Tree Theory methodology, as exemplified by the
PREP and KITT codes, the mode failures or critical
paths are first determined by a deterministic testing
method or by Monte Carlo simulation (the PREP
code) and then the characteristics are determined
according to the Kinetic Tree Theory approach (the
KITT codes). In the application, the top failure
characteristics are determined by use of the simple
upper bound approximations or by use of the bracket-
ing procedure. The bracketing procedure can be used
to obtain two simple envelopes, can be carried further
to obtain higher order envelopes, or can be carried
to completion by which the exact top failure charac-
teristics are obtained.

In application, the Kinetic Tree Theory methodo-
logy yields numerical results simply automatically,
and in very little computer time. Because of this
efficiency and because of the completeness of the
information obtained, characteristics can not only
be simply determined for complex fault trees by using
one set of data, but comparative studies can be simply
performed to obtain the effect of certain design chan-
ges, maintenance schemes, or repair schemes. For
these comparative studies several sets of data would

be used for the same fault tree or the fault tree itself
would be modified. The speed by which numerical
results are yielded, the completeness of information
obtained, the versatility to handle a wide spectrum of
fault trees, and the simplicity and automation of
application make the Kinetic Tree Theory approach
an extremely useful tool for evaluating fault trees.
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