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INTRODUCTION TO FAULT TREE SYNTHESIS 
USING THE LAF'P-POWERS METHODOLOGY 

Edward P. Lynch, ~ r g o n n e  Nat iona l  Labora tory  

I n  t h e  des ign  of any complex system t h e  ques t ion  of r e l i a b i l i t y  of 
equipment and in s t rumen ta t ion  a r i s e s .  A l a r g e ,  s i n g l e  t r a i n  chemical plant-- 
such a s  a h igh  tonnage ammonia p lan t - - i s  more economical t o  b u i l d  and 
o p e r a t e  t han  a p l a n t  of t h e  same c a p a c i t y  u s i n g  sma l l e r  m u l t i p l e  t r a i n s .  
However, equipment o r  ins t rument  f a i l u r e  which causes  a shutdown w i l l  r e s u l t  
i n  a much g r e a t e r  economic l o s s  t h a n  t h e  f a i l u r e  of one t r a i n  of a m u l t i p l e  
t r a i n  p l a n t .  The t r end  is toward t h e  h igh  c a p a c i t y  s i n g l e  t r a i n  p l a n t  b u t  
t h e  ques t ion  'what if---?' keeps coming up. There a r e  two approaches t o  
answering t h i s  ques t ion ,  b o t h  of which have been used s u c c e s s f u l l y  i n  t h e  
aerospace  and e l e c t r o n i c s  i n d u s t r i e s .  These are F a i l u r e  Modes and E f f e c t s  
Analys is  (FMEA) and Fau l t  Tree  Analys is  (FTA). It i s  only  q u i t e  r e c e n t l y  
t h a t  t h e s e  methods have been a p p l i e d  t o  t h e  chemical i ndus t ry .  

F a i l u r e  Modes and E f f e c t s  Ana lys i s  (FMEA) i s  a formal ized  method f o r  
asking t h e  ques t ion  'what if--?'. A l l  of t h e  p o s s i b l e  component f a i l u r e s  
such a s  v a l v e s  l e a k i n g ,  pump coupl ings  o r  s h a f t s  breaking ,  l i n e  blockages,  
ins t rument  f a i l u r e ,  o p e r a t o r  e r r o r ,  e t c . ,  a r e  hypothesized and p o s s i b l e  
e f f e c t s  on t h e  system a r e  determined by i n v e s t i g a t i n g  t h e  system response  t o  
each f a i l u r e  o r  combination of f a i l u r e s .  Th i s  can be  done q u i t e  r e a d i l y  w i t h  
a d i g i t a l  computer provid ing  a n  adequate  model of t h e  system is a v a i l a b l e .  
The key word is 'adequate1.  Rare ly  w i l l  a  model adequate  enough f o r  FMEA 
e x i s t  f o r  a chemical  p l a n t ,  p a r t i c u l a r l y  i n  t h e  des ign  s t a g e  where FMEA i s  
most u s e f u l .  Changes i n  p roces s  c o n d i t i o n s ,  p roces s  c o n s t r a i n t s ,  p h y s i c a l  
c o n s t r a i n t s ,  e t c . ,  make t h e  p roces s  f l o w  diagrams ever-changing documents- 
sometimes t o  t h e  p o i n t  where one t h i n k s  t h a t  o r d e r  w i l l  never  b e  brought  o u t  
of t h e  chaos. 

F a u l t  T ree  Analys is  is  a method of determining t h e  p o s s i b i l i t y  and/or  
p r o b a b i l i t y  of  a s p e c i f i c  des igna ted  f a i l u r e  occu r r ing .  A complete l o g i c  
diagram is cons t ruc t ed  which i d e n t i f i e s  t h e  immediate p recu r so r  even t s  l e a d i n g  
t o  t h e  f a i l u r e ,  t h e  p r e c u r s o r s  of t h e s e  even t s ,  and so on u n t i l  a pyramid 
s t r u c t u r e  o r  'Tree '  is  generated.  A p r o b a b i l i t y  is  ass igned  t o  each  event  
in t h e  t r e e  and t h e  o v e r a l l  p r o b a b i l i t y  of t h e  des igna ted  f a i l u r e  occu r r ing  
is  c a l c u l a t e d .  

The pr imary d i f f e r e n c e  between FMEA and FTA i s  t h a t  t h e  former starts 
w i t h  t h e  pr-1 p recu r so r  even t s  and works forward ( o r  upward) t o  d e t e c t  pos- 
s i b l e  f a i l u r e s  wh i l e  t h e  l a t t e r  i d e n t i f i e s  a s p e c i f i c  f a i l u r e  and works back- 
ward ( o r  downward) t o  i d e n t i f y  t h e  p recu r so r  even t s  which could  cause  t h e  
f  s i l u r e  t o  occur .  

Both FMEA and FTA a r e  systems approaches.  To use  e i t h e r  one it i s  
necessary  t o  have complete e n g h e e r i n g  f low diagrams ( u s u a l l y  r e f e r r e d  t o  a s  
P&ID's) and complete l o g i c  diagrams. It i s  a l s o  neces sa ry  t o  d e f i n e  t h e  
system adequate ly .  Although t h i s  may seem elementary it i s  sometimes t h e  
most d i f f i c u l t  p a r t  of t h e  a n a l y s i s . .  

Not t oo  many y e a r s  ago f a i l u r e  a n a l y s i s  was j u s t  that-- the a n a l y s i s  
of f a i l u r e s  w E c h  had a l r e a d y  occurred .  Th l s  l e d  t o  systems o f  preventive 



maintenance which became more and more s o p h i s t i c a t e d  over t h e  years .  No one 
argues  t h a t  prevent ive  maintenance i s  n o t  requi red .  However, p reven t ive  
maintenance systems a r e  based t o  a  g r e a t  e x t e n t  on an  a n a l y s i s  of previous  
f a i l u r e s  and do no t  t ake  i n t o  account t h e  unforseen f a i l u r e .  There is  no 
doubt t h a t  t h e  more h igh ly  s o p h i s t i c a t e d  systems of prevent ive  maintenance 
could b e n e f i t  from a FMEA o r  FTA of t h e  p l a n t  being maintained. 

Most process  des ign  engineers  a t tempt  t o  p r e d i c t  f a i l u r e  pathways 
through t h e  process  they  a r e  designing.  These p r e d i c t i o n s  a r e  u s u a l l y  based 
on experience o r  a  'gu t  f e e l i n g '  f o r  a  p a r t i c u l a r  pathway. While t h i s  
approach is n o t  a l l  bad it i s  d e f i n i t e l y  inadequate. The p repa ra t ion  of 
d e t a i l e d  process  l o g i c  diagrams would i n  i t s e l f  be  of cons ide rab le  a s s i s t a n c e  
i n  p red ic t ing  f a i l u r e  pathways. Unfortunately it appears  t h a t  t h e  g r e a t  
ma jo r i ty  of engineers  engaged in t h e  des ign  of chemical and/or  mechanical 
process  p l a n t s  a r e  b l i s s f u l l y  unaware t h a t  such a powerful t o o l  a s  t h e  l o g i c  
diagram e x i s t s .  The i n t u i t i v e  approach now used w i l l  i n v a r i a b l y  n o t  cons ider  
a l l  f a i l u r e  modes except  f o r  t h e  s imples t  processes.  The Fau l t  Tree Analys is  
system is a f a r  supe r io r ,  but  no means i n f a l l i b l e ,  approach. 

The m a t e r i a l  presented  h e r e  is n o t  designed t o  g i v e  t h e  r eade r  an in- 
depth knowledge of t h e  s y n t h e s i s  of f a u l t  trees. Many approaches have been 
made t o  t h i s  sub jec t  and t h e  body of l i t e r a t u r e  a s s o c i a t e d  wi th  f a u l t  t r e e s  :.:. 

i s  growing rap id ly .  The i n t e n t  h e r e  is  t o  show how l o g i c  diagrams may be used 
i n  f a u l t  t r e e  work. r n  t h e  a u t h o r ' s  opin ion ,  t h i s . c a n  be d o s t r a t e d  most 
adequately using t h e  techniques developed by and Power?". Only t h e  
s imples t  systems will be considered.  F a u l t  tree a n a l y s i s  is a v a s t  f i e l d  and 
it would r e q u i r e  a  book ' to  g i v e  an  adequate i n t r o d u c t i o n  t o  t h e  sub jec t .  
The f i r s t  systems w e  w i l l  cons ider  a r e  those  which involve  combinat ional  . 
l o g i c  only.  Although v a r i o u s  time l a g s  may be encountered,  everything i s  
assumed t o  happen i n  t h e  l o g i c a l  'now'. L a t e r  we w i l l  cons ider  a  sequen t i a l  
l o g i c  system where one o r  more events  cannot occur u n t i l  one o r  more previous  
even t s  have been completed. 

Any given chemical o r  mechanical process  p l a n t  is b u i l t  from b a s i c  
components which may i n t e r a c t  i n  many ways. Some type of c o n t r o l  i n s t r u -  
mentat ion is almost i n v a r i a b l y  requi red  f o r  proper  ope ra t ion  of t h e  system. 
This  ins t rumenta t ion  may involve  open-loop c o n t r o l ,  closed-loop feed  back 
c o n t r o l ,  closed-loop fecd  forward c o n t r o l ,  o r  va r ious  c o m b i ~ a t i o n s  of any o r  
a l l  of t h e s e  loops. A l l  of t h i s  must b e  considered i n  syn thes iz ing  a I a d t  
t r e e .  

W e  w i l l  cons ide r  only  s imple systems con ta in ing  few components and 
develop t h e  trees f o r  these.  One of t h e  s imples t  which could be s e l e c t e d  
is shown in Figure 1. Here we have a s h e l l  and tube c o o l e r  w i t h  no c o n t r o l  
ins t rumenta t ion .  A s s u m e  t h a t  t h e  top event  i n  our  tree i s  a h igh  temperature 
i n  s tream 4,  des ignated  a s  T4(+1). (A low temperature would be des ignated  
a s  T4(-1) ), Whar could cause t h i s ?  The p o s s i b l e  causes  a re :  

ML(-1) Mass f low i n  s tream I decreases  
M3(+1) Mass f low i n  stream 3 h c r e a s e s  
T3(:+1) I n l e t  temperature of ho t  f l u i d  inc reases  
T1(+1) I n l e t  temperature of cool ing  water  i n c r e a s e s  

Heat exchanger fou led  
Ex te rna l  f i r e  a t  hea t  exchanger 



These cond i t ions  a r e  shown g r a p h i c a l l y  in Figure  2.. This  i s  a vec tored  diagram, 
usua l ly  r e f e r r e d  t o  a s  a digraph (which i s  a coined word f o r  d i r e c t e d  graph).  
The f a u l t  tree f o r  t h i s  example i s  shown i n  Figure  3. It i s  evident  t h a t  
occurrence  of any of t h e s e  even t s  would r e s u l t  i n  t h e  top  event .  

We w i l l  now complicate t h i s  system by adding a simple feed back c o n t r o l  
loop a s  shown i n  Figure  4 .  Now t h e  number of even t s  which can cause t h e  top  
event  i s  cons iderably  increased .  These could be  l i s t e d  bu t  it is much e a s i e r  
t o  i n d i c a t e  them on t h e  d igraph,  Figure 5. 

The symbols used on a digraph a r e  completely a r b i t r a r y .  Because they  
a r e  e a s i l y  drawn, c i r c l e s  a r e  u s u a l l y  used t o  des igna te  d i s c r e e t  cond i t ions  

low r a t e ,  temperature,  p res su re ,  concent ra t ion ,  e t c .  Lapp and 
r r e f e r  t o  these  c i r c l e s  as "nodes" which is a s  goad terminology a s  any 
and one which w e  w i l l  u e here .  Inpu t s  t o  a node a r e  ind ica ted  by d i r e c t e d  
l i n e s .  Lapp and PowersqS2 use  t h e  term "edge" t o  desc r ibe  t h e s e  l i n e s .  W e  
w i l l  adopt  t h i s  terminology a l s o .  I f  a r e l a t i o n s h i p  between two nodes, shown 
by an  edge, depends upon another  r e l a t i o n s h i p ,  t h e  edge i s  known a s  a condi- 
t i o n a l  edge. A node which has no input  is c a l l e d  a primal node o r  prime 
event .  (Note t h a t  i n  Figure  3 'RX Fouled' is  a prime event  while  i n  Figure  5 
i t  is an event  causing a c o n d i t i o n a l  edge. I n  t h e  second case  fou l ing  may be  
compensated f o r  up t o  t h e  p o i n t  where t h e  c o n t r o l  v a l v e  is wide open). 

A g a i n  i s  always connected wi th  a n  edge. Gain i s  A  output/^ input .  
I f  t h e  g a i n  i s  g r e a t e r  than  1 it is def ined  a s  p o s i t i v e  and i f  it i s  less 
than 1 i t  is def ined  a s  negat ive.  I f  t h e r e  is no change in output  w i t h  
change i n  inpu t ,  t h e  ga in  is zero.  I n  a hypo the t i ca l  system w e  have no way 
of knowing what t h e  a b s o l u t e  va lue  of t h e  g a i n  is. W e  can r e f e r  t o  ga ins  
on ly  a s  zero ,  small o r  l a r g e .  For comparison purposes w e  can a r b i t r a r i l y  
a s s i g n  v l u e s  t o  these ,  e.g., l a r g e  = + 1000, small  = + l o o .  Lapp and 
Powers1" use + 10,  + I, and 0.  hes sea re convenient numbers t o  use  so we 
w i l l  adopt them. 1t-must be emphasized t h a t  t h e s e  v a l u e s  a r e  a r b i t r a r y .  For 
example, a small e x t e r n a l  f i r e  a t  a hea t  exchanger would be ass igned a +1, 
and a l a r g e  e x t e r n a l  f i r e  a +lo. How about  a medium f i r e ?  We a r e  only  
allowing v a l u e s  of 10, 1 and 0. When i n  doubt c a l l  i t  a l a r g e  f i r e .  

A l l  of t h e  information needed t o  analyze  t h e  system is given on t h e  
digraph. It is no t ,  however, in a readily usable  form. The in£ ormation i s  
put  i n t o  usab le  form through t h e  u s e  of a l o g i c  diagram. Before w e  can do 
t h i s  w e  must l e a r n  more about loops,  ga ins ,  and dev ia t ions .  

I n  Figure  5 we have a c o n t r o l  loop which must b e  c l a s s i f i e d .  The 
elements of  t h e  loop are :  

The ga2ns f o r  normal o p e r a t i o n ' a r e  shown above t h e  arrows. The n e t  g a i n  i s  
(-1) (+I) (+I) (+I) = -1 so  this is a n e g a t i v e  feedback loop (NFBL) . W e  
must now cons ider  t h e  magnitude o f '  t h e  d i s t u r b a n c e s  which could occur.  W e  
have used C+1) and (-1) t o  i n d i c a t e  normal d is turbances .  For b ig  and/or  
f a s t  d i s tu rbances  we  w i l l  u se  (+lo) and (-10). Could our loop handle such 
d i s tu rbances? .  To answer t h i s .  w e  must .analyze  t h e  i n t e r i o r  elements of t h e  
loop. 



M4 (-10) Severe decrease  i n  flow r a t e  o r  l o s s  of flow from supply. 
Neither  b i g  nor f a s t  d i s tu rbances  could be  handled. 
Opening t h e  c o n t r o l  va lve  would n o t  i n c r e a s e  t h e  flow. 

M4(+10) Large inc rease  i n  flow r a t e  from supply. 
Both l a r g e  and. f a s t  d is turbances  could be handled 
by t h r o t t l i n g  t h e  c o n t r o l  valve.  

P6(-10) Loss of instrument a i r  p ressu re  t o  t h e  temperature 
recording c o n t r o l l e r .  
Neither  l a r g e  nor f a s t  d i s tu rbances  can be handled. 
The TRC w i l l  cause the.  v a l v e  t o  go. f u l l y  open o r  
f u l l y  c losed depending upon i t s  design. 

Large and/or f a s t  d i s tu rbances  e x t e r n a l  t o  t h e  loop which w i l l  cause 
t h e  top event  a re :  

Ml(+lO) 
T 1  (+lo) 
T4 (+lo) o r  T7(+10) 
Large ex te rna l  f i r e  a t  h e a t  exchanger 

It is obvious t h a t  t h e  f a u l t  tree f o r  t h i s  system is  much more complex 
than t h a t  shown i n  Figure 3. An e x c e l l e n t  methodology f o r  synthes iz ing  such 
a tree has  been developed by Lapp and Powers. This is b e s t  descr ibed by the  
Lapp-Powers F a u l t  Tree Synthes is  Algorithm. This  a lgor i thm is shown i n  
Figures 6a through 6d.. For simple cases such a s  w e  a r e  cons ider ing ,  a f a u l t  
tree may be  synthesized manually by using t h i s  method. For more complex 
systems t h e  computer approach developed by Lapp and Powers is  recommended. 

W e  w i l l  now cons t ruc t  t h e  f a u l t  tree s t e p  by s t e p  f o r  t h e  system shown 
in  Figure  4. W e  w i l l  s e l e c t  T8(+1), i.e., T8 is  high, a s  t h e  top event .  W e  
have a l ready complied wi th  the  f i r s t  four  s t e p s  of  t h e  algorithm. The only  
v a r i a b l e  d i r e c t l y  a f f e c t i n g  T8 is  T2 so t h i s  i s  chosen a s  o u r  undeveloped 
va r i ab le .  W e  now ask, and answer, t h e s e  quest ions:  

Is  T2 on a NFBL? Yes. 
Does t h e  output  have va lue  = 0 ? . No.. 

This  i n d i c a t e s  t h a t  f o r  Step 1 w e  should go t o  Case D which is shown on 
Figure  6d. The r e s u l t  of  t h i s  s t e p  is  shown on Figure 7. In  t h i s  s t e p  w e  
have developed t h e  v a r i a b l e s  T2, M l ,  T I ,  T4, e x t e r n a l  f i r e ,  and h e a t  ex- 
changer (HX) fouled. A l l  of t h e s e  a r e  primal events  because they a r e  not  
s u b j e c t  t o  c o n t r o l  wi th in  t h e  system a s  defined.  The v a r i a b l e s  remaining t o  
be developed a r e  M4, P6, and P5, W e  w i l l  develop them i n  t h a t  o rde r ,  which 
is t h e  sequence i n  which they appear i n  t h e  loop. I n  r e s p e c t  t o  M4 w e  again  
ask,  and answer, theac  quest ions:  

Is M4 on a NFBL? Y e s .  
Does t h e  output  have value  = 0 ? Note that M4 appears twice,  once 

wi th  va lue  4. and once w i t h  va lue  
= -1. W e  w i l l  cons ider  t h e  va lue  
= 0 cond i t ion  f i r s t .  



When M4 has t h e  ou tpu t  v a l u e  = 0 w e  go t o  Case C. Step 2 is  shown on 
Figure  8. When M4 has t h e  ou tpu t  va lue  = -1 w e  go t o  Case D. Step 3 i s  
shown on Figure  9. Note t h e  a r e a  on t h i s  f i g u r e  enclosed by t h e  dashed l i n e .  
This  a r e a  was developed in Figure  8 and it i s  unnecessary t o  show i t  twice. 
I n  our  f i n a l  diagram w e  d i r e c t l y  connect t h i s  a r e a  t o  i ts  m u l t i p l e  d e s t i n a t i o n s  
i f  it i s  convenient t o  do so Otherwise, we w i l l  i n d i c a t e  d u p l i c a t e  a r e a s  
by match marking a s  a A 9 a 8 , e t c .  

W e  must now develop P6. Again w e  have two. output  va lues ,  P6(0) and 
P6(-1). W e  w i l l  cons ide r  P6(0) f i r s t .  P6 i s .  on t h e  NFBL so t h e  a lgor i thm 
d i r e c t s  u s  t o  u s e  Case C. S tep  4 i s  shown on Figure  10. For t h e  cond i t ion  
where t h e  ou tpu t  va lue  = -1 we a r e  r e f e r r e d  t o  Case D. S tep  5 i s  shown on 
Figure  11. This  l e a v e s  on ly  P5 t o  be developed. Th i s  a l s o  has two values .  
Step  6 ,  f o r  P5(0) is  shown on Figure  12. I n  t h i s  f i g u r e ,  t h e  x a c r o s s  t h e  in- 
put  T2(0) means t h a t  t h i s  is  no t  an a l lowable  input .  W e  have a l r e a d y  e s t a -  
b l i shed  t h a t  T2 has t h e  va lue  = +l. Step  7 f o r  ~ 5 ( - 1 )  is  shown on Figure  13.  

W e  now combine Figures  7 through 1 3  i n  Figure 14 wi th  d u p l i c a t i o n s  
omit ted.  A t  t h i s  po in t  t h e r e  w i l l  be a  n a t u r a l  d e s i r e  t o  ' co l lapse '  t h e  
tree somewhat. It i s  obvious t h a t  s e v e r a l  OR func t ions  could be combined 
and s i n g l e  input  func t ions  could be el iminated.  

It is  a l s o  p o s s i b l e  t h a t  c e r t a i n  Boolean manipula t ions  may b e  made t o  
s impl i fy  t h e  diagram. R e s i s t  t h e  tempta t ion  t o  do e i t h e r .  A r e l a t i v e l y  
minor change i n  t h e  process  o r  i n  t h e  ins t rumen ta t ion  could c o s t  many man- 
hours t o  f i n d  how i t  a f f e c t e d  t h e  tree if such ' s i m p l i f i c a t i o n s '  w e r e  made. 

The concept of ' cu t  sets' is  u s e f u l  i n  analys ing  a f a u l t  tree. A 
c u t  set is  t h e  set of even t s  along a pathway up t h e  tree which w i l l  cause t h e  
top event  t o  occur. Minimal c u t  sets a r e  those  which con ta in  no o t h e r  c u t  
s e t s  w i t h i n  them. There may b e  many c u t  sets and minimal c u t  sets i n  a  l a r g e  
t r e e  and they w i l l  con ta in  many elements.  These c u t  sets w i l l  tend t o  proceed 
through OR and EOR g a t e s  but  may a l s o  encounter AND g a t e s .  I n  t h e  s imple 
f a u l t  t r e e  shown i n  Figure  14 t h e r e  a r e  s e v e r a l  pathways and s e v e r a l  minimal 
c u t  sets. Because of t h e  s i m p l i c i t y  of t h i s  system most of t h e s e  sets con ta in  
one element only  ( ignor ing  0 which is  an  element of every set but  which he re  
i n d i c a t e s  t h e  absence of an  even t ) .  These sets a r e :  

S e t  No. El  ement s 

{rn (+lo) 1 
{TI (+lo) 1 
{T3 (+lo) 1 
{Large f i r e  a t  hea t  exchanger) 
{Control va lve  reversed)  
EM7(-10) 
(TAP(-lo) ) 
{Set p o i n t  (+l) ) 
{Temperature sensor. f a i l e d  low) 
{TRC reversed)  
{ M I  (+ l )  , c o n t r o l  va lve  s tuck} 
{Tl ('+I) , c o n t r o l  va lve  s t u c k )  

' (T4 (+l) , , ' con t ro l  va lve  s t u c k )  



The f i r s t  t e n  of t h e s e  a r e  more c r i t i c a l  than  t h e  l a s t  t h r e e  because 
they depend on one  event  only. Using t h e s e  t e n  on ly  and us ing  t h e  set numbers 
a s  event  numbers w e  may reduce t h e  tree i n  Figure  14 t o  t h e  t r e e  i n  Figure 15. 

The more AND g a t e s  w e  can g e t  i n t o  t h e  tree, p a r t i c u l a r l y  nea r  t h e  top, 
t h e  more r e l i a b l e  our  system w i l l  be--at l e a s t  t h e o r e t i c a l l y .  The c o n t r o l  
system f o r  t h e  hea t  exchanger shown i n  Figure  4 could be modified a s  shown 
i n  Figure.16.  Here w e  have added a backup system c o n s i s t i n g  of a  second 
temperature sensor ,  a  pneumat i c / e l ec t r i c  t ransducer  ( I / P ) ,  and two solenoid  
valves.  The cons t ruc t ' ion  of t h e  d igraph and f a u l t  tree f o r  t h e  modified 
system i s  not  included h e r e  because of space l i m i t a t i o n s .  Note t h a t  t h e r e  
a r e  t h r e e  feedback loops  i n  t h i s  system and that t h e  backup v a l v e s  f a i l  s a f e  
on l o s s  of e i t h e r  a i r  p res su re  o r  e l e c t r i c  power. I f ,  i n  a  r e a l - l i f e  s i t u a -  
t i o n ,  T8(+1) was a  c r i t i c a l  cond i t ion  which could cause a  hazardous event ,  
something such a s  t h i s  backup system would be j u s t i f i e d .  

So f a r  w e  have considered systems involving combinational l o g i c  only. 
Systems involving s e q u e n t i a l  l o g i c ,  o r  a  mixture  of t h e  two, a r e  of equal  o r  
g r e a t e r  importance. Here we must d i s t i n g u i s h  between s e q u e n t i a l  systems 
and s e q u e n t i a l  l o g i c .  It is  a very  common e r r o r  t o  assume that t h e  l o g i c  
encountered i n  a  s e q u e n t i a l  system is s e q u e n t i a l  l og ic .  It may o r  may no t  be. 
An example f r e q u e n t l y  used t o  i l l u s t r a t e  a  s e q u e n t i a l  system is  t h e  dual  
adsorp t ion  tower a i r  dry ing  u n i t  wi th  hot  a i r  regenera t ion  of t h e  adsorbent .  
This  u n i t  has  four  d i s t i n c t  modes o r  ope ra t ion  which a r e :  

MODE TOWER A TOWER B 

r egenera t ing  i n  s e r v i c e  
cool ing  i n  s e r v i c e  
i n  s e r v i c e  regenera t ing  
i n  s e r v i c e  cool ing  

The system opera t ion  is s e q u e n t i a l  i n  t h a t  t h e  modes a r e  e s t ab l i shed  i n  
sequence by a t imer.  The l o g i c  wi th in  each mode is, however, combinational 
and t h e  s y n t h e s i s  of t h e  f a u l t  t r e e  is  t h e  combination of t h e  s u b t r e e s  f o r  
each mode. Shaewitz, Lapp, and powers3 have presented a very thorough 
a n a l y s i s  of t h i s  system. The d ig raph  they show covers  a l l  of t h e  modes so  
so~lls care muat be taken i n  fol.lowing t h e  loops  f o r  each mode. 

An example of a simple system involving s e q u e n t i a l  l o g i c  i s  t h a t  of 
two pumps s t a r t i n g  success ive ly .  Pump A must run before  Pump B can run. 
Pump B must, however, pump wi th in  a  given flow range o r  it w i l l  shu t  down 
and au tomat i ca l ly  shut  down Pump A. A l o g i c  diagram f o r  t h i s  system i s  
shown i n  Figure  17. Because t h i s  system is completely e l e c t r i c a l ,  a p a r t i a l *  
elementary wiring diagram ( l adder  diagram), cons t ruc ted  from t h e  l o g i c  
diagram, is shown i n  Figure  18. This  diagram i n d i c a t e s  r e l a y  c i r c u i t r y  
a l though Ln a c t u a l  p r a c t i c e  s o l i d - s t a t e  c i r c u i t r y  would probably be  used. 

* P a r t i a l  i n  t h a t  thermal overload r e l a y s ,  f u s e s ,  e t c .  a r e  omi t ted ,  



For r e a d e r s  who are n o t  f a m i l i a r  w i t h  l a d d e r  diagrams an  exp lana t ion  of t h e  
symbols is g iven  a t  t h e  end of t h e  paper. An e x c e l l e n t  e x p l a n a t i o n ' o f  t h e s e  
diagrams may a l s o  be found i n  t h e  November 15 ,  1971 i s s u e  of CHEMICAL ENGI- 
NEERING. F igure  19 is t h e  d ig raph  f o r  t h i s  system.. I n  t h i s  d ig raph  w e  u s e  
t h e  r e l a y  and c o n t a c t  symbols u s e d . i n  t h e  l a d d e r  diagram. 

The 'concept  of g a i n  i n  a r e l a y  t y p e  e l e c t r i c a l  system is  somewhat 
r e s t r i c t e d .  I f  a c i r c u i t  is  energ ized  and t h e  corresponding r e l a y ,  o r  r e l a y s ,  
a r e  energ ized ,  t h e  g a i n  is  +I. I f  t h e  c i r c u i t  is deenerg ized  and t h e  co r r e -  
sponding r e l a y s  a r e  deenergized,  t h e  ga in  is  -1. I f  ene rg i z ing  o r  deenergi-  
z ing  t h e  c i r c u i t  h a s  no e f f e c t  on t h e  r e l a y s  ( r e l a y  s t u c k ,  burned o u t ,  e t c . ) ,  
t h e  g a i n  is  e i t h e r  +1 o r  -1 depending on. whether t h e  c o n t a c t s  are open o r  
c lo sed  a t  t h e  time. Because c u r r e n t  i s  e i t h e r  f lowing o r n o t  f lowing  t h e r e  
is no ze ro  again.  A g a i n  o t h e r  t h a n  t h e s e  has no meaning in r e l a y  c i r c u i t r y .  
Th i s  is  no t  t r u e  of  s o l i d  s t a t e  c i r c u i t r y  where v o l t a g e  su rges ,  e t c .  become 
important .  On t h e  F a u l t  Tree  i t s e l f ,  o n l y  t h e  c i r c u i t  c o n d i t i o n s  1 and 0 
may appear .  

There are f o u r  f a i l u r e  modes f o r  t h i s  system. They a r e :  

1. Pump A w i l l  n o t  s t a r t .  
2. Pump A s t a r t s ,  Pump B w i l l  n o t  s tar t ,  Pump A s h u t s  down. 
3.  Pump A starts. Pump B w i l l  n o t  s t a r t ,  Pump A con t inues  t o  run. 
4. Pump A s t a r t s ,  Pump B starts, system s h u t s  down a f t e r  x seconds.  

The f a u l t  t r e e  f o r  t h i s  system i s  found by combining a l l  of t h e  f a u l t  t r e e s  
f o r  t h e  f o u r  f a i l u r e  modes. Th i s  is  shown i n  F igu re  2 0 .  Some of t h e  fea-  
t u r e s  of t h e  Lapp-Powers a lgo r i thm w i l l  be  found i n  t h i s  f a u l t  t r e e  but  a t  
p r e s e n t  (1978) t h e r e  i s  no a lgo r i thm a v a i l a b l e  f o r  a system involv ing  t r u l y  
s e q u e n t i a l  l o g i c .  

So f a r  w e  have cons idered  f a u l t  tree s y n t h e s i s  on ly .  A f a u l t  t r e e  
. a n a l y s i s  r e q u i r e s  assignment of t h e  p r o b a b i l i t y  of occurrence  t o  each  of 

t h e  e v e n t s  i n  t h e  tree and combining t h e s e  p r o b a b i l i t i e s  t o  o b t a i n  t h e  over- 
a l l  p r o b a b i l i t y  of t h e  t o p  event  occurr ing .  The method of combining t h e  
i n d i v i d u a l  p r o b a b i l i t i e s  is covered i n  any s t anda rd  t e x t  on p r o b a b i l i t y .  
Obtaining t h e  i n d i v i d u a l  p r o b a b i l i t i e s  is  t h e  problem. Although t h e  body 
of l i t e r a t u r e  on t h e  s u b j e c t  is growing i t  i s  s t i l l  q u i t e  s c a n t  and narrow 
i n  scope. There is  a v a s t  amount of d a t a  bu r i ed  i n  t h e  maintenance f i l e s  
of a l l  medium t o  l a r g e  s i z e  companies. Unearthing t h e s e  d a t a  and p u t t i n g  
them i n t o  u s e f u l  form would b e  a n  extremely expensive and time consuming 
task.  I f  any o f  t h e  l a r g e  companies were w i l l i n g  t o  under take  such  a pro- 
j e c t ,  t h e y  would unders tandably  b e  unwi l l i ng  t o  r e l e a s e  t h e  r e s u l t s  f o r  
g e n e r a l  use.  I f ,  however, t h e  Fede ra l  Government w e r e  t o  fund such a pro- 
j e c t ,  t h e  informat ion  would be i n  t h e  p u b l i c  domain and a v a i l a b l e  t o  everyone. 

Note: Th i s  a r t i c l e  is  excerp ted  from t h e  manuscript  of a n  as y e t  unpublished 
book, t e n t a t i v e l y  t i t l e d  "Applied Symbolic Logic," by Edward P. Lynch. 
The au tho r  thanks D r .  Gary'J.. Powers and D r .  Stephen A. Lapp, bo th  
of  Carnegie Mellon Univers i ty , .  f o r  permission t o  u s e  c e r t a i n  m a t e r i a l  
included in t h e i r  "Short Course on F a u l t  Tree Ana lys i s '  i n  t h e  manu- 
s c r i p t  f o r  t h i s  book. F igu res  in  t h e ,  foregoing  a r t i c l e  which a r e  
p a r t  of th i s .  material are i d e n t i f i e d  a s  being'  t h e  work of D r s .  Powers 
and Lapp. 
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