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A methodology is developed by which exact and detailed probabilistic information is obtained for any fault tree. 
The methodology, called “Kinetic Tree Theory”, is believed to be a major advancement in the field of reliability and 
safety analysis and is expected to have far-reaching ramifications. 

The first assumption of Kinetic Tree Theory is that the primary failures, or components, of the fault tree are 
independent; one primary failure may occur at any number of places in the fault tree, but those primary failures 
which are unique are assumed independent. Inter-dependent primary failures can be handled by extension of the 
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of the fault tree are known. These are obtainable in a straightforward manner from the fault tree as is demonstrated. 

Fault trees of any structure and of any complexity are handled. General failure and repair distributions are 
handled; there is no limitation to these distributions as in other methodologies. Complete probabilistic information 
is first obtained for each primary failure of the fault tree, then for each mode failure (critical path), and finally for 
the top failure itself. The information is obtained as a function of time, and hence, with regard to reliability and 
safety; complete kinetic behavior is obtained. The expressions developed are in a simple form, and as is shown, 
application to yield numerical results is both efficient and straightforward - with an average computer time on the 
order of one minute required for a 500 primary failure fault tree (on an IBM 360/75 computer). 

1. Introduction 

Any failure, whether it be of a reactor protective 

system, a rod drive system or the entire reactor power 
plant, can be depicted in terms of a fault tree. The 
fault tree is a logical diagram of the consequences of 
basic failures, called “primary failures”, on the failure 
of interest, called the “top failure”*. The top failure 
is the final failure of predetermined designation while 
the primary failures are the fundamental failures 
..rh;eh s.e.x.ea rha +r\n fc,n:lr,rta l-ha +r\.~ fAlx.rn f,w vv1ucI11 ~(IU.n, Lllcl cvp IauLLI~. 11kC rvy IaMU1.z) I”I 

example, may be the failure of a reactor protective 
system with the primary failures being failures of 

basic components of the reactor protective system. 
The fault tree traces the top failure to the primary 
failure causes; in this sense the fault tree represents a 
deductive method of analysis. The primary failures of 
the fault tree are failures whose respective causes are 
not of concern. The primary failures are thus “basic” 

failures, for which failure data is available, and re- 

present the limit of resolution of the fault tree. The 

construction of fault trees and basic fault tree con- 
cepts are described by Haasl [l] , Nagel [ 21, Mearns 

[3] and Headington et al. [4]. The purpose of this 

article is not the discussion of fault tree concepts and 
construction, of which the reader is assumed to have 
a basic knowledge. Instead, the evaluation of the con- 
structed fault tree is the topic here, which is the sub- 
sequent step after construction. 

____1_.._~_1 The fatlt iiee, liWiiig lXeii COrrsrructcu, is W&i- 

ated to first obtain the critical paths. A critical path, 
which we shall term a “mode failure”, is a smallest 

set of primary failures such that if all these primary 
failures simultaneously exist, then the top failure exists **, 

* In some references, “primary failure” is termed “component 
failure”, and “top failure” the “system failure”. 

** In some nomenclatures, mode failures are termed “minimal 
cut sets”. 
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A mode failure is thus a unique way, or mode, by 
which the top failure occurs. The (finite) collection 
of mode failures obtained from evaluating the fault 

tree are thus all the unique modes by which the top 

failure occurs. If a mode failure is defined to exist 

when all its member primary failures exist, then the 
top failure exists if one or more of the mode failures 

exist. The top failure can consequently be repre- 
sented as the union of the mode failures of the fault 

tree; this union is the non-redundant expression of 

the fault tree. In terms of fault tree nomenclature, a 

mode failure consists of an “and gate” attached to- 

which are the primary failures constituting this mode 

failure. The top failure can then be represented as an 

“or gate” attached to which are the mode failures 

(i.e., the and gates). Mode failures are discussed in 

more detail by Esary and Proschan [S] . The reader 

is assumed to have basic knowledge of the mode 

failure, or critical path, concepts. 
In an actual evaluation, the mode failures of a 

fault tree can be obtained by a number of methods. 
The mode failures can be obtained by Boolean re- 

duction, using simple rearrangement techniques or 

the minterm, maxterm approaches [6]. Testing of 

the fault tree can be used, where certain primary 

failures are assumed to occur and then the top failure 

is checked to determine if it has occurred. This deter- 

ministic testing is quite rapid if performed by a com- 

puter. Finally, Monte Carlo simulation can be used, 

with importance sampling employed to accelerate 

the Monte Carlo process. In general, the mode failures 
of a fault tree can be obtained in a straightforward 

With knowledge of the mode failures of the fault 
tree, the evaluation can then proceed to obtain the 
probabilistic characteristics of the primary failures, 

mode failures, and the top failure. Previously, the 
evaluation to obtain these probabilities has been done 
by Monte Carlo simulation or by Boolean determi- 
nistic methods. These evaluations were sometimes 
performed on the fault tree itself, in which case the 
mode failures were obtained concurrently with the 
probabilistic characteristics. In other cases, the eva- 
luation was performed after the mode failures were 

obtained (i.e., the evaluation was performed on the 
non-redundant representation of the fault tree). The 
methodology which will be presented here is of the 
second type, where it is assumed that the mode 

failures have already been determined. (As stated, 

the obtainment of the mode failures is quite direct 
and actual methods of obtainment are demonstrated 

in the applications given later.) 

Basically, the Monte Carlo approach is a procedure 
in which trials of the fault tree are simulated. In each 

trial, primary failures are made to occur and are re- 
paired according to their failure and repair probabi- 
lities. The top failure is checked at various time 

points to determine whether it has occurred. For 

every top failure occurrence, a “success” is tallied 

in the appropriate tally counter. The average of the 
successes over many trials yields an estimate of the 

probability of the top failure occurring. The Monte 

Carlo simulation is applicable to systems of any com- 

plexity and can theoretically handle any prescribed 

failure and repair distributions. However, the Monte 

Carlo simulation requires a fairly large amount of com- 

puter time, and to obtain results in reasonable time, 

the failure and repair distributions assigned to the 
primary failures must be limited to simple forms. 
Further, the Monte Carlo simulation yields statistical 
estimates for results, and there is always a disturbing 

possibility that these estimates may be in considerable 

error, which is not shown by the accompanying error 
estimates. This is particularly so since the user must 

guess at forcing parameters which influence the esti- 

mates obtained. 

The Boolean approach analyzes the fault tree in 
a Poisson manner by considering the various combi- 

nations of primary failure occurrences which are nec- 

essary for a top failure occurrence. The probabilities 
_c r,____ ____l_:__L:___ ̂ __ ^_... _..r.3 >.I. mu. _‘.I’~ 11 oi rnese C;UII~III~~~IIS are cumpureu uererminisricauy 

and are then tallied to obtain the probability of the 
top failure occurring. The Boolean approach has the 
advantage of yielding deterministic results without 
any associated statistical error. However, to yield 
results in a practical amount of time, the Boolean 
approach is limited to analysis of simpler trees, where 
there are a smaller number of the various primary 
failure combinations for which probabilities must be 
computed. The severest limitation of the Boolean 
approach is that methods have been derived to handle 
only very simple failure and repair distributions which 
can be assigned to the primary failures. General failure 

distributions, such as those which include burn-in and 

wear-out, and general repair distributions, such as a 
normal repair distribution, cannot be handled. 
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To incorporate the generality which is theoretical- 

ly possible in the Monte Carlo approach and the deter- 
ministic results which are obtainable from the Boolean 
approach, the methodology presented here evaluates 
11.- L--__‘A L___ l_.. -^--^ _JY’.._L_L:I:&.. &L,.,._.. ,.,,-I me Idult l-ret: LJy II,tXlILS “1 yl”“a”“lly Lllevly dllU 

differential calculus. The methodology, as stated, 
assumes the mode failures of the fault tree have been 
determined. The methodology also assumes the pri- 

mary failures of the fault tree are independent; one 

primary failure may appear at any number of places 
on the fault tree, however, independence is assumed 

with regard to any two or more primary failures. 

Interdependent primary failures can be handled by a 
straightforward extension of the methods which will 

be developed here. 

In the wedding of probability theory and differ- 

ential calculus, the probabilities of the events con- 

sidered are proportional to dt, a differential incre- 
ment in time. Probabilities of intersections of these 

events are of order (dt)* and hence can be validly 
neglected (unlike the Boolean approach which must 
consider all intersections since “macroscopic” events 
are considered). Analysis of general, complex fault 
trees thus becomes significantly simplified. Further, 

general failure and repair distributions can be assigned 
to the primary failures; there is no restriction as to 
the distributions which can be used. The results ob- 

tained with this methodoiogy are exact and are ob- 
tained as functions of time. Moreover, detailed, 
time-dependent probabilities are obtained not only 
for the top failure, but are obtained for every mode 
failure and for every primary failure of the fault tree. 
Thus, complete knowledge of the top failure, includ- 

ing the importance of particular mode failures and 
primary failures, is obtained for all time. Finally, as 
will be evident from the applications given, the 

methodology can be simply applied to yield numer- 
ical results in very little computer time. We shall call 
this methodolow of usine nrobabilitv theorv and ~~~~, ~~ ~~~~.pI~------., , ---- 
differential calculus “Kinetic Tree Theory” since 

reliability and safety information is obtained for all 
time. 

2. primary failure information 

Consider a single primary failure of the fault tree. 
Let 

x(t) dt = the probability of the failure 

occurring in time t to r + dt 
given the failure is not exist- 

ing at time 1, (I) 

p(r)dt = the probability of the failure 

being repaired in time r to 
r t dr given the failure is 

existing at time r (2) 

The quantities h(r) and p(r) are basic data in terms 

of fault tree analysis or reliability theory and are 

dealt with extensively in the literature [7-91. The 

quantity A(r) is termed the failure rate for the prima- 

ry failure, while p(r) is termed the repair rate for the 
primary failure. If the primary failure is the failure 

of a component, then h(r) and p(r) are termed the 

component failure rate and component repair rate, 
respectively. For any reliability or fault tree study, 
the quantities A(r) and p(r), or their equivalent, 

must be known for every primary failure of the fault 
tree. Extensive tabulations of A(r) and p(r) have been 
obtained for a wide variety of failures [4, 71, and it 
will be assumed that h(r) and p(r), or their equiva- 
lents, are known for every primary failure of the 

fault tree. 

From A(r) and p(r), other probabilistic quantities 
may be obtained which quantify, or characterize, 
the particular primary failure. The probability of 
the primary failure first occurring in time r to r + dr 
given it is not existing at time r’, a(r’, r)dr, is 

t 
a(r’, r)dr = exp[-J A(r”)dr”] A(r)dr ; 

1’ 

r’<r. (3) 

From ea (3). the nrobabilitv that the nrimnrv failllrp ‘. \~,I ~~~~ =-- _____. , ----- --- - r - -___-. , _ -__ -. ” 

does not occur from time r’ to r, fir’, r), is simply 

f(r’, r) = exp(-Jr A(r”) dr”); r’ < r . (4) 
t’ 

With regard to repair, the probability that the primary 
failure is repaired at time r to r + dr, given it is existing 
at time t’, b(r’, r) dr, is 
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b(t’, t) dt = exp ,-; p(t”) dt”] p(t)dt ; 
t’ 

tr =z t . (5) 

The quantities a(t’, t) and b(t’, t) are termed the 

first occurrence distribution (or first failure distribu- 
tion) and the repair distribution, respectively. The 

termf(t’, t) is called the non-occurrence or non-failure 

probability. The quantities h(t) and p(t), and the quan- 

tities a(t’, t), b(t’, t) and f(t’, t) which are directly de- 
rived from h(t) and p(t) will all be termed primary 
failure data. 

Besides the above, there are two other primary 

failure characteristics which are essential for any 

reliability study or fault tree evaluation. The first 
characteristic is the primary failure intensity w(t), 
which is defined such that 

w(t) = the expected number of times the 
primary failure occurs at time t 
per unit time. (6) 

From the definition of w(t), the expected number of 
times the primary failure occurs in any interval from 
t’ to t, w(t’, t), is thus 

t 

w(t’, t) = J w(t”) dt” . 
I’ 

(7) 

The quantity w(t) dt is the expected number of times 

the failure occurs in time t to t + dt; the failure must 

not exist at time t and then must occur in the interval 

dt. 
From hereon, assume the initial condition that at 

t = 0 the primary failure does not exist. An equation 
for w(t) in terms of the data for the primary failure 
can then be readily obtained from balance considera- 

tions; 

t t 

w(t) = ~(0, t) + J dt”w(t”) J dt’b(t”, t’)a(t’, t). 

0 
,r 
t 

(8) 

The first term on the right hand side of eq. (8) is the 
contribution to w(t) from the first occurrence of the 
primary failure. The second term is the contribution 

to w(t) from the failure occurring at time t”, being 
repaired at t’, and then reoccurring at time t. 

For a specific first occurrence distribution a( t’, t) 
and repair distribution b(t’, t), eq. (8) thus deter- 

mines the primary failure intensity w(t). For the case 
of the failure being non-repairable, for example, 

b( t’, t) - 0 and eq. (8) becomes 

w(t) = a(0, t) ; non-repairable primary 
failure 

In general, eq. (8) can be solved using Laplace trans- 

form techniques, or simple numerical integration 

techniques can be used. 

The second primary failure characteristic of inter- 
est is the primary failure existence probability y(t); 

q(t) = the probability of the primary 
failure existing at time f. (10) 

The non-existence probability, or the probability of 
the primary failure not existing at time t is merely 
I ~ q(t). From the definition of x(t), eq. (I), and 
w(t), eq. (6), it is apparent that 

w(t) = [ 1 -4(t)l X(f) , (11) 

or 

W(f) q(t) = 1 -~ 
h(t) 

For a specific failure intensity w(t) and failure rate 

h(t), q(t) is simply obtainable from eq. (12). 
The quantities w(t) and q(t), along with the basic 

data h(t), p(t), a(~‘, t), b(t’, t) andf(t’, t), are definitive 
functions which characterize the probabilistic behav- 

ior of the primary failure for all time. From the pri- 

mary failure’s basic data, w(t) and q(t) can be simply 
obtained for every primary failure of the fault tree. 
This merely requires using the pertinent data in eqs. 

(8) and (12) for each primary failure. The character- 
istics w(t) and q(t), obtained for every primary failure, 
are important in themselves since they show the effects 
of repair, maintenance, and changes in environment 
(phases) and show these effects as functions of time. 
Moreover, with w(t) and q(t) determined for all the 
primary failures of the fault tree, the probabilistic 
characteristics for the mode failures and for the top 
failure can be obtained. 
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3. Mode failure information 

As stated previously, a mode failure, or critical 
path, is a smallest set of primary failures such that if 
all these primary failures exist at time t the mode 

failure (and top failure) exists at time t. Because a 

mode failure is simply a “compounded” type of 
failure, the same probability characteristics which 

were obtained for a primary failure can be obtained 

for the mode failure. 
Consider a particular mode failure. Let it consist 

of n primary failures and let these constituent pri- 

mary failures be designated with indices from 1 
through n. Assume the primary failures are indepen- 

dent and at t = 0 they all do not exist. The first 
characteristic obtained for the mode failure will be 
the mode failure existence probability Q(t); 

Q(t) = the probability that the mode 
failure exists at time t. (13) 

Since the mode failure exists at time t if and only if 
all its primary failures exist at time 1, 

where qj(t) is the existence probability for the jth 

primary failure of the mode failure (eq. (12)). The 

mode failure non-existence probability, P(t), is then 
just 1 - Q(t) and is the probability of the mode 
failure not existing at time t; in terms of the consti- 

tuent primary failures, P(t) is the probability of one 
or more of these primary failures not existing at 

time t. Equation (14) allows Q(t), or P(t), to be 
simply determined from the primary failure infor- 
mation. 

The existence probability Q(t) is of significance 
to the top failure to which the particular mode failure 
contributes. If the mode failure exists at time t then 
the top failure exists at time t. Q(t) is consequently 
the probability that the top failure exists at time t 
by means of this particular mode failure existing at 
time t. Examination of the Q(t) for all the mode 
failures (critical paths) of the fault tree will yield 
those critical mode failures by which the top failure 
is most likely to exist. 

The mode failure rate A(t) is defined in the same 

way as for a primary failure; 

If 

A(t) dt = the probability of the mode 
failure occurring in time t 
to t + dt given the mode fail- 

ure does not exist at time t. (19 

ut s the event of the mode failure 

not existing at time t (16) 

and 

d r+dt z the event of the mode failure 
existing at time t + dt , (17) 

then 

A(t) dt =%fr+dt/Ut) . (18) 

The symbol “3” denotes the probability of an event 
and the symbol “I” denotes the probabilistic given 

condition. Eq. (18) merely states that, given it does 
not exist at time t, the mode failure occurs in t to 

t + dt if and only if it is existing at time t + dt. From 
basic probability theory, eq. (18) may be written as 

W r+dt ‘1) 
A(t) dt = 9p(u,j 9 (19) 

where a product of events denotes their intersection, 

or simultaneous occurrence. 

For the event dt+dtur to occur, one or more of 

the primary failures must not exist at time t and 

these primary failures not existing must all simulta- 
neously occur between time t to t + dt. Validly 

neglecting orders of dt greater than or equal to two, 

3’(dr+dtut) is thus 

(20) 

Each term in the above summation is the probability 
of the jth primary failure occurring in t to t t dt 

(wi(t) dt) with the remaining primary failures already 
existing at time t. Because primary failures occurring 
in a time interval dt are considered, only one primary 
failure can occur and combinations of more than one 
primary failure simultaneously occurring can be validly 
neglected. 
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The mode failure rate A(t) is thus obtained since 

w.Q) = 1 - Q(t) > (21) 

where Q(t) is the mode existence probability. Eq. (19) 
therefore becomes 

2 wi(t) dt I”I ql(t) 
j=l I=1 

A(t) dt = 
lfi 

1 - c?(t) 
or 

A(f) = liti 
1 - Q(t) ’ 

(22) 

(23) 

By use of eq. (23) the mode failure rate is thus readily 

obtained from the constituent primary failure infor- 
mation. 

From the mode failure rate A(t), the first occur- 

rence distribution for the mode failure, A(t’, t), can 

be expressed in an analogous manner as for a primary 
failure; 

Act’, t) = exp [- J A(?“) dt”] A(t) ; 

t’ < t . (24) 

A(!‘, r) dt is the probability that the mode failure first 

occurs at time t to t t dt given it is not existing at time 

t’. As for a primary failure, the non-occurrence pro- 

bability for the mode failure F(t’, t) is 

F(t’, t) = exp[- J A(t”) dt”] ; t’ < t , (25) 

and is the probability of the mode failure not occur- 
ring in the interval from t’ to t. The probability that 
the mode failure occurs in this interval is simply 

1 - F(t’, t). A(t’, t) and F(t’, t) (or 1 -F(t’, t)) are 
important characteristics since they aid in determin- 
ing the most critical mode failures, those which are 
most likely to occur and cause the top failure to 
occur. 

The remaining quantity of interest characterizing 

the mode failure is termed the mode failure intensity 

W(t); 

W(t) = the expected number of times 

the mode failure occurs at 
time t per unit time. (26) 

The integral of W(t) over any time interval from t’ to 
t is thus the expected number of times the mode 
failure occurs in this time interval. The mode failure 

intensity W(t) is immediately determined from the 

definition of the existence probability Q(t) and the 
failure rate A(t); 

w(r) = [ 1 - Q<t>l Nf> . (27) 

The mode failure can occur in t to t + dt only if it 
does not exist at time t and it then occurs in dt. 
Substituting eq. (23) into eq. (27) yields W(t) in 
terms of the constituent primary failure information, 

n n 

w(t) =c wjw n 4/(f) (28) 
j=l I=1 

lfi 

The quantities Q(t), A(t), and W(t), which charac- 

terize the mode failure are thus all simply determin- 

able from the characteristics w(t) and q(t) of the pri- 

mary failures which comprise the mode failure. The 
probabilistic characteristics for the mode failure are 

important in themselves since they quantify each 

mode failure as functions of time. They show the 

effects of repair, maintenance and environmental 
conditions on the particular mode failure, or critical 

path. The characteristics can be simply determined 

for every mode failure of the fault tree by using in 
eqs. (14) (23) and (28), the appropriate primary 

failures which are members of each mode failure. 
In doing so, the critical mode failures, those which 
are most likely to cause the top failure to occur, will 
be determined, and any corrective action will conse- 
quently be directed toward these critical mode fail- 
ures. Besides being important in themselves and 
yielding the critical mode failures, the mode failure 
characteristics are important since they lead to the 
determination of the characteristics of the top failure 

of the fault tree. 
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4. Top failure information 

Before venturing into the evaluation of the proba- 
bilistic characteristics of the top failure of the fault 
tree, some general probability relationships must first 

be established. Let lJyzl Ai denote the union of the 
n events Ai, and let A 1 ,A,,...,A, denote the inter- 
section of the m events. Then, from basic probability 
theory [lo], 

n i-l j-l 

+ cl2 c 3(AiAiAk) - . . . 
i=3 j=2 k=l 

+(-1)“-‘3(_4,A,...An)) (29) 

where the symbol “5P” again denotes the probability 

of an event. As depicted in eq. (29), the probability 

of a union of events involves the probabilities of all 
the various combinations of the intersections of the 

events. It is also shownjn basic probability theory 

that if these intersections are taken into account such 

that intersections of an increasing number of events 

are successively considered, then successive upper and 

lower bounds are obtained for T(U yzl Ai) until, 
finally, its exact value is reached [lo] . 

(30) 

n n i-l 

3(i~~ ‘j) ~~7(‘i) - CC~(Aj~j) ) i=2 j=l 
(3l) 

n n i-l 

$ ‘$) +%AJ - Cz?(+Ij) i=2 j=l 

n i-l j-l 

+c c c 3(A,AjA,) 
j=3 j=2 k=l 

etc. (32) 

Eq. (30) is generally the most useful for determining 

an upper bound for 9(Wz1 Ai). If. however, the con- 
tributions from successively greater intersections be- 

come increasingly smaller, then the successive upper 
and lower bounds, eqs. (31), (32), etc., will approach 

each other, and the “bracketing” or “enveloping” of 
the true probability will become increasingly tighter. 

The upper bounds, eqs. (30), (32), etc., will become 
successively smaller in value and will approach the 

lower bounds, eqs. (31), etc., which successively grow 

in value. When applicable, this successive bracketing 
of 9(Uyz1 Ai) is a useful method of converging to its 
true value. 

With these preliminary relationships established, 

the evaluation of the characteristics for the top 
failure may proceed. Assume the mode failures (criti- 

cal paths) of the fault tree are known, and let there 

be N such mode failures. Let these mode failures be 
indexed from 1 to N. Assume also the initial condi- 
tion that at I = 0 all the primary failures of the fault 

tree are non-existent. The top failure characteristic 

most simply obtained is the top failure existence 
probability Q,,(f); 

Qo(f) = the probability that the top 

failure exists at time t. (33) 

The complement of this quantity, 1 - Qo(f), is the 
probability that the top failure is not existing at time 

I and is sometimes termed the availability of the sys- 
tem. 

Let 

di = the event that the ith mode 

failure exists at time r. 

From eq. (13), 

(34) 

y(dJ = QiO> a (35) 

where Qi(r) is the ith mode failure existence probabi- 
lity, which is simply determined from eq. (14), where 
the primary failures in this equation are those com- 

prising the ith mode failure. Since the top failure 
exists if and only if one or more of the mode failures 
exist 

(36) 
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Using the expansion relationship, eq. (19), eq. (36) 
may be written as 

+ . . . t (-l)‘+1’9(d,dz . d,,) (37) 

Consider a general event d,d, dm. i.e., the simul- 

taneous existence of the m mode failures. Since the 
primary failures are assumed independent and since 
a mode failure exists if and only if all its primary 
failures exist, 

+1.....m 

3’(d,d, . . . dm) = n q(t) (38) 

The product symbol is defined such that 

+1,...,t?l 

I-r = the product of unique primary (39) 
failure quantities where the 

primary failure occurs in at least 

one of the mode failures 1, . . . . m. 

A particular primary failure quantity thus occurs at 

most only once in the product and occurs only if 

the primary failure is a member of at least one of 

the mode failures denoted above the product symbol. 

Computation of 3(d, . . . d,), eq. (38), therefore 
simply consists of collecting the unique primary 

failures which are members of one or more of the m 
mode failures (with indices I, . . . . m) and then multi- 
plying the existcncc probabilities y(t) of these pri- 

mary failures. From cq. (38), eq. (37) thus becomes 

+ 1 , . . . . N 

+ . t (-p l-I 4(t) (40) 

The exact value for PO(t) can be straightforwardly 
determined by using eq. (40) since the products in- 
volved (eq. (38)) can be computed by a simple collec- 
tion of the unique primary failures in the mode failures 
denoted above the product sign. Following this collec- 

tion. a simple multiplication of the existence probabi- 
lities q(t) is made. This is particularly rapid when 

programmed for a computer. For a fault tree with a 

smaller number of mode failures, or critical paths, 
eq. (40) will thus yield Qo(t) in a reasonable amount 

of time. Further, for a large class of primary failure 

data, the primary failure existence probabilities y(t) 
and hence Q,(t) reach “steady state”, constant 
values very quickly. Therefore, for these situations, 

Qo( t) need only be calculated as a function of time 
until it assumes its respective steady state value, or 

this steady state value can only be calculated using 
the steady state values for the q(t) of the primary 
failures. 

Forprimary failure existence probabilities, y(t), 

much less than I, which is generally the case, the 

bracketing procedure (eqs. (30), (31), (32). etc.) is 

a particularly efficient method of obtaining succes- 
sively tighter envelopes for Q,(f). As the bracketing 

procedure is applied to eq. (40), Q,(t) is less than 

or equal to the first term on the right hand side, is 

greater than or equal to the first two terms, and so 

forth: 

iv 

Q,(t) '5 Qi(t) 1 (41) 

iz’ N i-l +i,j 

etc. 

The contribution from each successive term involves 

a larger number of factors of q(t) in the product. 
Therefore, for q(t) < 1, these successive terms be- 
come rapidly smaller and can be regarded as higher 
order correction terms. For fault trees with many 
mode failures, or critical paths, the bracketing can 

be carried out only as far as deemed necessary, 
giving tight envelopes for Qo(f) in a reasonable time; 

in fact, the first two brackets, eqs. (41) and (42), are 
usually within three significant figures of one another, 
giving a tight enough envelope for most computations. 

For those situations in which a simple but accurate 

approximation is desired for Q,(t), use may be made 
of a relationship determined by Esary and Proschan 
[S] . In their paper, Esary and Proschan show that 
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I,‘ 

~(f~=o,f2=o’ . . . . f,=O) a i=l T&=0) 9 I-l (43) 

where the fi consists of products of certain indepen- 

dent binary random variables (i.e., the random vari- 
ables can only assume values of 1 or 0). 

Let 

ui = the event if the ith mode failure 
not existing at time t, (44) 

where from the definition of the mode failure exis- 

tence probability, eq. (13) 

9(ui) = 1 - Qi(t) . (45) 

Taking the complement of eq. (36) 

1 - Qu(f) = ?(u1u2 . . . uN) ; (46) 

the top failure does not exist at time t if and only if 

no mode failure exists at time t. Assign binary random 

variables to each primary failure such that the variable 

equals 1 when the failure exists and equals 0 when it 
does not exist. The event ui then corresponds to the 

event fi = 0 where fi is the product of the binary ran- 

dom variables of the primary failures which are mem- 
bers of the ith mode failure. Therefore, eq. (43) may 

be applied to the probability P(u1u2 . . . u,,,) to ob- 
tain, 

.N 

.‘ . 

3J(u1u2 . . . UN) > I-r 
i= l  ‘(‘i) ’ (47) 

or 

N 

9(UlUl . . . UN) > I-I 
i=l 

(1 - Qi(t)) ’ (48) 

Substitution of eq. (46) into eq. (48) results in the re- 
lationship desired; 

N 

Q,(t) G 1 -& - Qi@N . (49) 

Eq. (49) gives an upper bound and hence a safe and 
conservative estimate for Q,(t). As the mode existence 

probabilities Qi(t) can be simply determined from 

eq. (14) this upper bound can be simply obtained 

for fault trees with any number of mode failures. 
Moreover, eq. (49) would be an exact equality if the 
mode failures had no primary failures in common, 
or equivalently if the events ui were independent. If 
the mode existence probabilities Qi(t) are much less 
than 1, which is the usual case, then the events ui 

are very nearly independent since the probabilities 
;P(Ui) = 1 - Q,(t), for all i, are approximately equal 
to 1. In fact, as the Q,(t) approach 0, the upper 

bound given by the right hand side of eq. (49) ap- 

proaches the true value of Q&t). In general, there- 

fore, eq. (49) gives an accurate and also conservative 

approximation for Qo(t). 
Having obtained Qo(t), the characteristic next 

determined is the top failure intensity, W,(t); 

W,(t) = the expected number of times the 

top failure occurs at time t per 
unit time. (50) 

W,(t) dt is the expected number of times the top 

failure occurs in t to t t dt, and the integral of W,(t) 
from tl to t2 is the expected number of times the 
top failure occurs in this particular interval of time. 

Let 

Bi = the event of the ith mode failure 

occurring in time t to t + dt. (51) 

From eq. (26) 

P’(t$) = Wi(t) dt , (52) 

where W,(t) is the ith mode failure intensity. 
For the top failure to occur in t to t + dt, all the 

mode failures must not exist at time t and then one 
or more of the mode failures must occur in t to 

t + dt. Hence, 

‘u(t) dt = ‘[A it ‘iI 7 (53) 

where UE1 19~ is the event of one or more of the Bi 
occurring and A is the event of all the mode failures 

not existing at time t. From eq. (44) 

A = u1u2 . . . uN , (54) 
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where u,. is the event of the ith mode failure not 

existing at time t. A product of events, as in eq. (54), 

again denotes their intersection (simultaneous oc- 
currence). From basic probability theory, 

where B is the event of one or more of the mode 
failures existing at time t; 

B=L 
j=, I . 

The event di is the event of the jth mode failure exist- 

ing at time t (eq. (34)). The expression for the top 

failure intensity W,(t) therefore becomes 

Eq. (57) is readily understood from consideration of 

the individual terms on the right hand side. The first 
contribution to W,(t) dt, 9[ lJzl Oil , is the contri- 

bution from one or more of the mode failures oc- 

curring. Whenever a mode failure occurs, the top 
failure occurs. However, the second term’?[B Uzl e,] 
must be subtracted from T;p[ Uz, Bi] . This term 

accounts for those cases in which one or more mode 

failures occur while other mode failures are already 
existing. The top failure cannot occur in these cases 

since it is already existing (i.e., has occurred at an 
earlier time and was not repaired). 

Consider the first term on the right-hand side of 
eq. (57). Using the expansion relationship; eq. (29) 

N N i-l 

‘Ii{ eil =g9[eil - !gFl 3[eiejl 

(58) 

+ . . . + (-l>N-lT[e,e, . . . eN] 

The first term on the right hand side of this equation 
is simply the contribution from an individual mode 
failure occurring (eq. (52)). The second and proceed- 
ing terms involve the simultaneous occurrence of two 
or more mode failures; the mode failures considered 

in the particular combinations must all not exist at 
time t and then must all simultaneously occur in t 
to t + dt. 

The probability of one primary failure occurring in 
t to t + dt is equal to w(t) dt and hence is proportional 
to dt. The simultaneous occurrence of two or more 
mode failures can thus only be caused by one primary 

failure occurring, and moreover this primary failure 
must be a common member of all those mode failures 
which must simultaneously occur. Consider the gener- 
al event 0102 . . . e,, i.e., the simultaneous occurrence 
of the m mode failures. Let there be k unique primary 
failures which are common members to all of the m 
mode failures; each of these primary failures must be 
a member of every one of the mode failures I, . . . . m. 
If k is zero, then the event 0 182 . . . 6Jm cannot occur 

and its associated probability is zero. Assume, there- 
fore, k is greater than zero. 

If one of these k primary failures does not exist 

at t and then occurs in t to t f dt, and all the other 
primary failures of the m mode failures exist at t 
(including the k - 1 common primary failures) then 

the event 0 1 . . . 6J,,, will occur. The probability of the 

event e1 . . . em is thus seen to be 

+l,...,m 

3[e,... em] = W(t; 1, . . . . m) dt I-I 4(t) . 
. 

(59) 

The product symbol in eq. (59) is defined such that 

+l,...,m 

r-I 
= the product of unique primary 

. failure quantities where the 
primary failure occurs in at 
least one of the mode failures 

1, . . . . m but is not a common 
member in all of them. (60) 

The product in eq. (59) is therefore the product of 
the existence probabilities of those primary failures 
other than the k common primary failures. Also, a 
primary failure existence probability occurs only once 
in the product even though it is a member of two or 
more mode failures (it cannot be a member of all m 
mode failures since these are the k common primary 

failures). 
The quantity W(t; 1, . . . . m) dt accounts for the k 
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common primary failures and is defined such that 

w(t; 1) . ..) m) = the failure intensity for a 
mode failure which has as 
its primary failures the 
primary failures which are 

common members to all 
the mode failures 1, . . . . m. (61) 

If the m mode failures have no primary failures com- 
mon to all of them, then W(t; 1, . . . . m) is defined to 

be identically zero; 

w(t; 1, . ..) m) = 0, no primary failures 
common to all m mode 

failures. (62) 

Examination of the expression for a mode failure 

intensity, eq. (28), shows that the intensity consists 
of one primary failure occurring and the other pri- 

mary failures already existing. This is precisely what 

is needed for the k common primary failures. Com- 

putation of W(t; 1, . . . . m) therefore consists of con- 

sidering the k common primary failures as being 

members of a mode failure and using eq. (28) to 

calculate w(t; 1, . . . . m), the failure intensity for 

this “mode failure”. 

Computation of the probability of m mode 

failures simultaneously occurring, eq. (59), is there- 
fore quite direct. The unique primary failures which 
are members of any of the m mode failures are first 

separated into two groups, those which are common 
to all m mode failures and those which are not com- 
mon to all the mode failures. Those primary failures 
which are not common are those which do not ap- 
pear in every mode failure. A particular primary 
failure thus occurs in only one group and occurs 

only once in this group. The common group is con- 
sidered as a mode failure in itself and W(t; 1, . . . . m) 
is computed for this group directly from eq. (28). If 
there are no primary failures in this common group, 
then W(t; 1, . . . . m) is identically zero and computa- 

tion need proceed no further (Y4[el . . . e,] = 0). For 
the non-common group, the product of the existence 
probabilities for the member primary failures is com- 

puted. This product and FV(t; 1, . . . . m) are multiplied, 
and with the additional factor of dt, 9[8, . ..e.] is 
obtained. As will be seen, the factor dt will “cancel 

out” in the final expression and will not be needed. 

With the general termP[el . . . e,] being deter- 
mined, eq. (58) which gives the first term for Wu(t)dr 

is subsequently determined. 

N N i-l 

9[,! ei] = g wi(t) dt - cx lV(t; i, i) dt 
i=2 j=l 

+i,i N i-l i-l +i.i.k 

x n q(t) + gF2 gl Mt; i, i, k) dt n 4(t) - 
. . 

+l,...,N 

+(-ly-’ N’(t; 1, . . ..iV)dt n q(t). (63) 

The first term on the right hand side of this equation 

is simply the sum of the failure intensities of the in- 
dividual mode failures. Each product in the remaining 

terms consists of separating the common and uncom- 
mon primary failures for the particular combination 

of mode failures and then performing the operations 

as described in the preceding paragraph. The opera- 
tions can be rapidly performed by a computer. More- 

over, each succeeding term on the right hand side of 

eq. (63) consists of combinations of a larger number 

of mode failures simultaneously occurring and in turn 
consists of a larger number of products of q(t). There- 

fore, each succeeding term rapidly decreases in value, 

and as will be elaborated later, the bracketing proce- 

dure is extremely efficient when applied to eq. (63). 

Eq. (63) consequently determines the first term 

for W,(t) dt, eq. (57) and the second term 
9[B UfL1 Oi] must now be determined. Expanding 
this second term yields 

nr N N i-l 

+ . . . + (-ljv-1 3[e,e, . . . e,B] , (64) 

where again 

N 

B=u di. 
j=l 

(56) 

Consider a general term in this expansion, P[er . . . B,B] 
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Is[8 1 . . . B&I] is the probability of the m mode 
failures simultaneously occurring in t to t t dt with 

one or more of the other mode failures already 
existing at time t (event B). Let 

W,(t; 1, 

where 

W&; I, 

m) dt =9[8, . 8,B] , (65) 

m) = the rate of occurrence of 
the m mode failures 1, . . . . m 
simultaneously occurring 

at t with one or more of the 

other mode failures already 
existing at time 1. (66) 

The term “rate of occurrence” simply means “pro- 

bability per unit time”. The term WB(t; 1, . . . . m) 
should not be confused with the term W(t; 1, . . . . m) 
of eq. (61). WB(t; 1, . . . . m) is simply used for ease of 
notation and refers to the entire event 8, . . . B,B oc- 

curring while W(t; 1, . . . . m) refers to the common 
primary failures of the modes 1, . . . . m occurring. 
With the notation of eq. (65), eq. (64) may be re- 

written as 

N i-l 

cr/ 
i=2 jz1 

W,(t; i, j) dt 

+ . + (-jr”-’ W,(t; 1, . . . . N) dt. (67) 
= W(t; 1, . . . . m-l, . . . . n) dt 

Since the event B involves a union, the general The failure intensity W(t; 1, . . . . m-l, . . . . n) is defined 
term in eq. (67) may be expanded into the form such that 

N 

W&t; 1, . . . . m) dt =g 3[19,, . . . . Omdi] 

N i-l 

- C C !?[81 ... 8,didjlL 
i=2 j=l 

+ . . . + (-1yy-’ qe 1 . ..0.dld2 . ..dN] , 

(68) 

where di is the event of the ith mode failure existing 

at r. Consider now a general term in this expansion, 

310, B,d, . . . d,]. If this term is determined then 

WB(f; 1) . ..) m) dt will be determined and hence 
ZP[B Uf$ tlj] will be determined. 

The event 8, . . . B,d, . . . d, is similar to the event 
f3 1 . . . Brn previously analyzed with the exception that 
now the mode failures 1, . . . . n must also exist at time 
1. If a mode failure exists at time t all its primary 
failures must exist at time t, and these primary fail- 

ures cannot occur in t to t + dt since an occurrence 
calls for a non-existence at t and then an existence at 
t + dt. The expression for T[O, . . 8, d, . . . d,] is 

therefore analogous to the previous expression for 
??[13 1 . /!I,] (eq. (59)) with one alteration. Those 
primary failures common to all the m mode failures 

1, . . . . m, which are also in any of the n mode failures 
1, . . . . H, cannot contribute to W(t; 1, . . . . m) since 

they must already exist at time t (for the event 

d, . . . d,). Hence, these primary failures, common to 
all m mode failures and also in any of the n mode 

failures, must be deleted from W(t; 1, . . . . m) and 

must be incorporated in the product of primary 
failure existence probabilities 

It is therefore seen that ‘Y[Bl . . Bm d, . . . d,] can 

be expressed as 

3’[ 8, . . . fIIm d, . . . d,] 

W(t; 1, . . . . m-l, . . . . n) 

= the failure intensity for a mode 

failure which has as its primary 
failures the primary failures 
common to all m mode failures 
1, . . . . m deleted from which are 
those primary failures also in any 
of the mode failures 1, . . . . n. (70) 
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If there are no such primary failures, then IV(t; 1, . . . . 

m-l, . . . . n) is defined to be identically zero; 

IV(t; 1, . . . . m-l, . . . . n) = 0, no primary 
failures common to 

all the mode failures 

1 , ,.., m and also not 
in any of the mode 

failures 1, . . . . n. 

(71) 

The computation of IV(t; 1, . . . . m-l, . . . . n) is again 

straightforward. As before, the primary failures 
common to all m mode failures 1, . . . . m are first 

obtained. From this group are deleted those primary 

failures also in any of the mode failures 1, . . . . n. This 
remaining group of primary failures, those in all m 
mode failures and not in any of the n mode failures, 
is considered a mode failure and eq. (28) is used to 

directly compute IV(t; 1, . . . . m-l, . . . . n) for this 

“mode failure”. 
The product symbol in eq. (69) is defined such 

that 

1, . . . . n 

I-I = the product of unique primary (72) 
1, . . . . m failure quantities, where the 

primary failure is a member of 
any of the mode failures 1, . . . . n 
or is a member of the mode fail- 
ures 1, . . . . m, but is not a common 
member of these m mode failures. 

The product is simply a product of primary failure 
quantities for those primary failures which are 
members of any of the mode failures 1, . . . . m or 
1 , . ..7 n deleted from which are those primary failures 

used for IV(t; 1, . . . . m-l, . . . . n). In case of eq. (69), 
the product involves primary failure existence pro- 
babilities. 

The computation 3[0, . . . 8, d, . . . d,] is there- 
fore straightforward. All the unique primary failures 
which are in any of these m tn mode failures are 

first collected. If a primary failure occurs in more 
than one mode failure it still only appears once in 

this collection. From this collection are removed 
those primary failures used for IU(t; 1, . . . . m-l, . . . . n), 
i.e., those primary failures only in the m mode failures 

which are also common to all of them. If there are 

no such primary failures, then IV(t; 1, . . . . m-l, . . . . n) 
is identically zero and computation need proceed no 
further, (P[e, . . . 0, d, . . . d,] = 0). If there exists a 

group of such primary failures, then this group is 
considered a mode failure in itself and eq. (28) is 
used directly to calculate its failure intensity 

W(t; 1, . . . . m-l, . . . . n). The existence probabilities 

of the remaining primary failures in the original col- 
lection are then simply multiplied together. This 

product is multiplied by IV(t; 1, . . . . m-l, . . . . n), and 
with an additional factor of dt, then gives 

qe, . . . em d, . . . d,] . As will be seen the factor dt 

becomes unnecessary in the final computation. The 

computation can be rapidly performed by a computer, 

and as will be seen, is extremely efficient since the 

bracketing procedure can be used. 

With the general term 3[0, . . . em d, . . . d,] deter- 

mined, WB(t; 1, . . . . m) dt of eq. (68) is consequently 

determined; 

N i’ 

WB(t; . . m) dt c 
j’=l 

1, . . . m-i’) n do 
1 ,...,m 

N P-1 i’. i’ 

- c c 
jr=2 j’=l 

W(t; 1, . . . . m-i’, i’) dt lflm q(t) 

t . . . . (73) 

Each term for 5P[B Url Oil in eq. (67) is thus deter- 
mined and can be expressed as 

i’ 

Fv,(t;i,, . ..) in) = 5 
i’=l 

bu(t;i,, . ..) $4’) I-I 4(t) 
il,...,i, 

N i’- 1 i’, j’ 

- c c lv(t;i,, . ..) in&j’) n 
i’z2 jr=1 

q(t) 
il,...,rn 

t . . . ) (74) 

where for the first term on the right hand side of eq. 

(67), il, . . . . in becomes i, for the second iI, . . . . i, 
becomes i, j, and so forth. The computation of each 
term in eq. (74) follows the same procedure as was 
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described earlier for PIQl . . . 8, dl . d,J; for example, 
for the terms within the first summation sign, i,, . . . . i, 
become the mode failures 1, . . . . m and i’ becomes the 
mode failures 1, . . . . n in the previous discussion. 

The second term for W,(t) dt is determined with 
the use of eq. (74) and hence the top failure inten- 
sity W,(t) is finally determined. Summarizing the 
expressions obtained, 

W,(f) = Iv!‘(r) - @‘(t) ) (75) 

N N i-l +i, j 

N i-l j-l +i, j, k 

+ CE C W(l; i, j, k) n q(t) 
i=3 j=2 k=l . 

_ . . . ) (76) 

N i-l 

-cc Iv,@; i, j) + . . . ) (77) i=2 j=l 

=.5 W(t;i,, . . ..i.-i’) 
j&l 

fi s(t) (78) 
il,...,zn 

N C-1 i’, j’ 

-c c 
it=2 jr=1 

W(t; i, . . . in-i’, j’) l-r q(r) + . . . 
il,...,i, 

The product symbols and failure intensities in the 
above equations are defined by eq. (60), (61) (70), 
and (72). The differential dt has “cancelled out” in 
the above equations, and the symbols W&*)(t) and 

W&t’(r) have replaced 19[B Uzl O,] and Y[ I_$& ~3~1, 
respectively (with the cancellation of dt). 

For fault trees with a smaller number of mode 

failures, the above system of equations can be solved 
exactly to obtain W,(t). The operations needed to 

compute the individual terms, which were described 

earlier, are straightforward and can be rapidly per- 
formed by a computer. If the primary failure quanti- 
ites used in the terms reach asymptotic, steady state 

values then W,(t) need only be computed as a func- 
tion of time until its steady state value is reached. 
For a large class of problems the steady state values 

are reached quickly, simplifying the calculations. 
For fault trees with a larger number of mode 

failures, the bracketing procedure is an extremely 

efficient method of obtaining as tight an enveloping 

as desired for W,(t). In eqs. (76) through (78), an 
upper bound can be obtained for w’,l’(r), Wb2’(t), 

or WB(t; it, . . . . z’*) by considering just the first terms 

in the respective right hand expressions for these 

quantities. Lower bounds can be obtained by con- 

sidering the first two terms, new upper bounds can 
be obtained by considering the first three terms, 

and so forth. Various combinations of these succes- 

sive upper and lower bounds will give successive 

upper and lower bounds for W,(t). 
As an example of the application of the bracket- 

ing procedure, a first (and simplest) upper bound for 

W,(f)> w,(0,,> is given by the relations 

WjW,, = W~)W,,, 1 (79) 

where 
N 

Wb])(f)max =lz W.(f) 
j=] 1 

(80) 

Hence, the first upper bound, W,(t) < W,(t),,, is 
simply the sum of the individual mode failure inten- 
sities. A first lower bound for W,(t), Wg(t),in, is 
given by the relations 

W,(r),, = w(‘)(t) 0 - $j2)(r) mm IKiX’ (81) 

with 

N i-l i. i 

- C C W(t; i, j)nq(r) , (84 
i=2 j=l e 

(83) 
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W,(C Qmax = ,$ W(t;i-i’) 

i’ 

I-l q(r) . (84) 
i 

This lower bound for W,(r), W,,(r) > WO(r),in, only 

involves combinations of two mode failures. Consid- 
ering more terms in the expressions given by eqs. (76)- 
(78), will yield other successive upper and lower 

bounds of W,-,(f). 
Because the primary failure existence probabilities 

q(t) are much less than unity, the successive upper 
and lower bounds will rapidly converge to one another. 
As an example, the first upper bound and lower bound, 

given by eqs. (79) and (81), will generally agree to 
within three significant figures, giving a tight enough 

envelope for most computations. For scoping calcu- 

lations, and in fact for many calculations, the first 
upper bound (eq. (79)) is of sufficient accuracy for 

a determination of W,(t); 

(86) 

This approximation gives a conservative estimate of 

W,(t), which is desirable, can be simply computed 
from the mode failure intensities W,(r), and is usually 

within three significant figures of the true value of 

w&). 
The top failure intensity W,(r) is thus determined, 

whether it be by computation of its exact value or by 
use of the bracketing procedure to obtain successive 
upper and lower bounds, one upper andJower bound, 
or merely an upper bound. With the failure intensity 

W,(f) and the existence probability Q,(t) determined, 
the remaining top failure characteristic, the top failure 

rate, is simply obtainable. The top failure rate Au(t) 
is defined in a completely analogous manner to the 

primary and mode failure rate; 

A,(f) dt = the probability that the top 
failure occurs in time r to I + dt 
given it is not existing at time t. (87) 

Moreover, the top failure rate is applied in precisely 
the same way as the other failure rates. The quantity 

exp (- I A,(r’) df’) AoM 
0 

is the first occurrence distribution for the top failure, 

the probability that the top failure first occurs at r 
per unit time. The quantity, 

exp (- J AO(r’) dr’) 

0 

is the probability that the top failure does not occur 
during the interval from 0 to r and one minus this 

quantity is the probability that the top failure does 
occur in this interval. 

From the definitions of the top failure existence 

probability Q,(r) (eqs. (33)) and the top failure in- 
tensity W,(r) (eq. (SO)), it is apparent that 

W,(r) dr = [1 - Q,(r)] Ao(r) dr . w3) 

For the top failure to occur in r to r + dr, W,(r) dr, it 
must not exist at time r, 1 - Q,(r), and given it does 
not exist at time r it must occur in r to r + dr, Ao(r) dr. 
Therefore, quite simply, 

we(r) 
'O(') = 1 _ Q,(r) 5 (89) 

and with knowledge of W,(r) and Q,(r), AO(r) is 
therefore known. 

Using the exact values in eq. (89), for W,(r) and 

Q,(r) will yield the exact value for Ao(r). Using 

upper or lower bounds for both W,(r) and Qo(r), 
obtained from bracketing, will yield respective upper 
or lower bounds for A,(r). Obtaining envelopes for 

w,(r) and Q,(r) will thus yield envelopes for Ao(r). 

The simplest upper bound for Ao(r) is obtained by 
using the upper bound for Qo(r) from the Esary and 
Proschan relation, eq. (49) and the first upper bound 

for W,(r) given by eq. (79) 

N 

I 
N 

Ao(r) G g W&r> UC1 -Qi(f>> . (90) 

This first upper bound is directly obtained from the 

mode failure characteristics Wi(r) and Qi(r) and more- 
over is also an excellent approximation to the true 

value of Ao(r), generally agreeing to within three sig- 
nificant figures of the true value. This approximation 

is also desirable since it is conservative, being an upper 
bound. Using the simplest lower bounds for W,(r) 
and Qo(r) (eqs. (8 1) and (42)) will give the simplest 
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lower bound for A,,(t) generally agreeing with eq. (90) 
to three significant figures. 

The top failure rate A,(t) is thus determined, 

whether exactly or by enveloping. The top failure 

characteristics Q,(t), w,(t), and A,(t) are conse- 

quently all determined. These characteristics com- 
pletely quantify the top failure for all time. The 

values of these characteristics quantitatively give the 

safety of the system with regard to the occurrence of 

the top failure. The response of these characteristics 

to design changes or particular repair and maintenance 
schemes quantitatively determines the effectiveness 

of such changes or schemes. Moreover, response of 
these characteristics to changes in environment or 

operation is immediately obtained. This response to 

system “phases” is an immediate by-product of the 
functional dependence of the characteristics on time. 

The top failure information obtained therefore en- 
compasses general conditions incorporated in the 
fault tree, yielding detailed and complete knowledge 
for any specific situation. With the use of the bracket- 
ing or enveloping procedure, the information is further- 
more obtained efficiently and in little time. 

5. Applications 

To apply the methodology described in the pre- 
ceding sections, which we call Kinetic Tree Theory, 

three computer programs have been developed, PREP, 
KITT-1, and KITT-2. The codes are written in FOR- 

TRAN IV for the IBM 360/7.5 computer. As stated, 

the Kinetic Tree Theory methodology requires the 

mode failures, or critical paths, of the fault tree in 

order to obtain the top failure information. The code 

PREP, therefore, first obtains the mode failures from 
the fault tree. Having obtained the mode failures, 

KITT-I or KITT-2 is then run to obtain the charac- 

teristics for the individual primary failures, mode 

failures, and top failure. 
The fault tree, having been drawn, is first input in 

a coded form to the PREP program. The input to 
PREP is quite simple. Each unique primary failure on 
the fault tree is assigned an arbitrary unique name. 
Also, each unique logical gate is assigned an arbitrary 
name. Each gate is then described on an input card; 
the card gives the name of the gate, the type of gate 
(“AND” or “OR”) and the names of the gates and/or 

primary failures attached to the gate. The gates may 

be input in any order, PREP determining the neces- 

sary logical sequence. Up to 2000 gates and up to 
2000 primary failures (or inhibit conditions) can be 

handled by PREP. 

From the input, PREP constructs the FORTRAN 
logical description of the fault tree and then obtains 

the unique mode failures (critical paths). The mode 
failures are determined either by Monte Carlo simu- 

lation or by deterministic testing. The Monte Carlo 

simulation uses the power method described by 

Nagel [2] . However, this technique is used only to 
obtain the mode failures and is therefore quite fast 

since it is not used to obtain quantitative information 

(the probability characteristics); for example, 500 
mode failures can be found for a 400 primary failure 

fault tree on the order of 1 minute computer time. 

The power method has the feature that the most 
important mode failures, those most likely to occur, 
are found first. In the deterministic testing method, 

combinations of primary failures are made to occur 
and the top failure is then checked for its occurrence 
in order to obtain the mode failures. Each primary 

failure is made to occur singularly to obtain the mode 
failures consisting of one primary failure. Combina- 

tions of two primary failures are made to simultane- 

ously occur to obtain the mode failures consisting of 
two primary failures, and so forth. The deterministic 

testing method ensures that all mode failures con- 

sisting of up to II primary failures are found, where 

n is set by the user. Since it is not the purpose of this 

paper to delve into the details of determining mode 

failures, the virtues of one technique over the other, 

or how to combine the two techniques most efficient- 

ly to obtain the mode failures, this will not be dis- 
cussed. The PREP and KITT code manuals [ 111 
describe the mechanics and use of the codes in detail, 

for the interested reader. It need only be said here 
that for a general, complex fault tree, the mode failures 

can be obtained in an efficient and complete manner. 
Having obtained the mode failures, either KITT-1 

or KITT-2 is then run to obtain the probability 
characteristics described in the preceding sections. The 
KITT codes are particular applications of the general 
Kinetic Tree Theory methodology presented earlier 
and hence the codes have certain restrictions. For the 
codes, the primary failures are restricted to having 
constant failure rates (h(t) = X). With regard to repair 
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I I TOP 

I 2 3 4 5 6 

Fig. 1. Sample fault tree. 

of the primary failure, constant repair times, constant 

repair rates (v(t) = p), and non-repairability can be 

handled. (For a constant repair time r, the primary 
failure is repaired in exactly a time interval of r from 
the time of its occurrence, where r is the sum of the 

detection and actual repair time.) Any mixture of 
non-repairable and repairable primary failures can 
be handled. Also, any number of inhibit conditions 

can be treated *. As in the general methodology, all 
primary failures are assumed independent. 

KITT-1 is a “single-phase” code; for a given 

primary failure, its failure rate and type of repair (or 
non-repairability) must remain the same for all time. 

* An inhibit condition is a condition, or event, which must 
exist in addition to a prima.ry failwe in order to cause sub- 
sequent, or secondary, failures. 

KITT-2 is a “multiphase” code in which the failure 
rate and type of repair must be constant in one time 
period (phase) but can change in an arbitrary 
manner from phase to phase; each primary failure 
may have up to 50 unique phases. The input to KITT-1 
or KITT-2, besides the mode failures obtained from 
PREP, consists of the failure rates and repair data for 
the primary failures. If KITT-2 is used, the time 
boundaries of the phases, for each primary failure, 
must also be specified. The output from the KITT 
codes are the primary failure, mode failure, and top 

failure characteristics enumerated in the previous 
sections. These characteristics are obtained at arbit- 
rary time points specified by the user. Since the 

mechanics of the codes is not of concern here, they 
will not be elaborated upon. The computer codes have 
been thoroughly checked, and their use and mechanics 

are described in their associated manuals [ 1 l] . 
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As an illustration of the applications of the metho- 

dology developed, consider the sample fault tree de- 

picted in fig. 1. The symbols, as described by Haasl 

[ 1 ] , denote: 

n ‘or gate’ Lk ‘transfer out’ 

‘and gate’ A ‘transfer in’ 

0 ‘primary failure’ 

The phraseology describing failures caused as a con- 

sequence of primary failures has been deleted for 

brevity (these subsequent failures are usually described 

in rectangles). The primary failures have simply been 
given indices as their names; the indices associated 

with the corresponding primary failures are shown in 

fig. 1. Also, the top failure has simply been called 
“TOP”. 

The gates of this sample fault tree were arbitrarily 
named, and the fault tree was input to PREP. The 
deterministic testing method was used to obtain all 

the mode failures, or critical paths, of the fault tree. 

These mode failures obtained are shown in table 1. 

In this table, each unique mode failure was given a 
separate index to identify it and these indices are 
given in the first column. In the second column, the 
primary failures which are members of the particular 
mode failure are given. The indices of the primary 

failures are those used in fig. 1. For example, from 
table 1, primary failures 1 and 2 must both simulta- 

neously exist for mode failure 1 to exist. Since a 

mode failure (critical path) is simply a mode by 
which the top failure exists, if primary failures 1 and 

Table 1 
Mode failures of the sample fault tree 

Mode failure 
Primary failures 
constituting the 
mode failure 

1 1, 2 
2 1, 3 
3 2, 3 
4 4, 5 
5 436 
6 5,6 

2 both exist, then the top failure exists. That these 
are all the unique mode failures of the fault tree can 

be verified by simple inspection of the tree. The total 
computer time needed by PREP was under 0.01 

minutes. 

Having obtained the mode failures, KITT-1 was 
then used to obtain the characteristics for this fault 

tree. The failure rates assigned to the primary failures 

and input to KITT-1 are shown in table 2. All the 

primary failures were treated as being non-repairable 

for this first problem. 

Table 2 
Primary failure rates h for the sample fault tree 

Primary failure h 
index OK-‘) 

1 2.60-06 
2 2.60-06 
3 2.60-06 
4 3.50-05 
5 3.50-05 
6 3.50-05 
I 5.00-06 
8 5.00-06 
9 8.00-06 

10 8.00-06 

(The nomenclature used in this paper is such that 
2.60-06 means 2.60 X 10 -6 .) The primary failure 
and mode failure characteristics obtained form KITT-1 
are shown in table 3. The top failure characteristics 

obtained are shown in table 4. The characteristics 

were obtained for 11 points in time (t), equally 
spaced at 1000 hours, however only 7 of these time 
points are given in these tables. 

The characteristics shown in table 3 for primary 
failure 1 are also those for primary failures 2 and 3 

since these primary failures all have the same failure 

rates (2.60-06 hr -’ ); in an analogous manner the 
characteristics shown for primary failure 4 are also 
those of primary failures 5 and 6. In table 3, the 
primary failure rates h are merely those read in and 
are printed again for convenience. The characteristics 
for primary failures 7 through 10 are not given since 
these primary failures are not members of any of the 
mode failures and hence in no way affect the top 
failure. It can be simply shown from the preceding 
theoretical discussions that for a non-repairable 
primary failure ; 
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Table 3 
Primary failure and mode failure characteristics for the non-repairable sample tree 

Characteristics for primary failure 1 Characteristics for primary failure 4 

h(l) w(t) h(f) W) 
On-‘) @r-l) 9(r) (hr.-‘) On-‘) 9(f) 

0.0 2.60-06 2.60-06 0.0 3.50-05 3.50-05 0.0 
1.0 2.60-06 2.59-06 2.60-03 3.50-05 3.38-05 3.44-02 
2.0 2.60-06 2.59-06 5.19-03 3.50-05 3.26-05 6.76-02 
3.0 2.60-06 2.58-06 7.77-03 3.50-05 3.15-05 9.97-02 
4.0 2.60-06 2.57-06 1.03-02 3.50-05 3.04-05 1.31-01 
5.0 2.60-06 2.57-06 1.29-02 3.50-05 2.94-05 1.61-01 

10.0 2.60-06 2.53-06 2.57-02 3.50-05 2.47-05 2.95-01 

ix 1 O3 hr) 

Characteristics for mode failure 1 Characteristics for mode failure 4 

A(0 W) QW NO wo 
w-l) (hr-‘) (hr-r) (hr-‘) 

QW 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 1.35-08 1.35-08 6.74-06 2.33-06 2.32-06 1.18-03 
2.0 2.68-08 2.68-08 2.69-05 4.43-06 4.41-06 4.57-03 
3.0 4.01-08 4.01-08 6.04-05 6.34-06 6.28-06 9.94-03 
4.0 5.32-08 5.32-08 1.07-04 8.09-06 7.95-06 1.71-02 
5.0 6.63-08 6.63-08 1.67-04 9.68-06 9.43-06 2.58-02 

10.0 1.30-07 1.30-07 6.59-04 1.60-05 1.46-05 8.72-02 

Table 4 
The top failure characteristics for the non-repairable sample tree 

Exact results Upper bounds QO(r) envelopes MC QoW 

TX 103 hr) @I-‘) 
A($‘) w,(r) 

(hr-‘) Q&l 
A@) 
(hr ‘) 

$-@I 
(hr ‘) Q$‘) Q@min Q,(t),, Q,(r) 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 6.80-06 6.77-06 3.49-03 7.04-06 7.01-06 3.56-03 3.45-03 3.57-03 3.47-03 
2.0 1.26-05 1.24-05 1.32-02 1.35-05 1.33-05 1.37-02 1.29-02 1.38-02 1.30-02 
3.0 1.76-05 1.71-05 2.80-02 1.95-05 1.90-05 2.97-02 2.70-02 3.00-02 2.85-02 
4.0 2.19-05 2.09-05 4.70-02 2.53-05 2.40-05 5.06-02 4.48-02 5.15-02 4.68-02 
5.0 2.57-05 2.39-05 6.95-02 3.08-05 2.85-05 7.58-02 6.54-02 7.78-02 6.90-02 

10.0 3.94-05 3.10-05 2.12-01 5.81-05 4.41-05 2.41-01 1.86-01 2.64-01 2.08-01 
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t 
q(t) = 1 w(t’) dt’ , 

0 
(91) 

4(t) = 1 - exp(- .f A(t’) dt’) . (92) 
0 

Hence, q(t) in table 3 is also equal to the expected 
number of times the primary failure will occur to 

time t (eq. (91)) and in addition is also equal to the 
probability that the primary failure will occur to 

time t (eq. (92)). 
The characteristics for mode failure 1 in table 3 

are also those for mode failures 2 and 3 since these 
mode failures are all composed of similar primary 

failures. Likewise, the characteristics for mode failure 

4 are also those of mode failures 5 and 6. As for a 
non-repairable primary failure, for a mode failure 
consisting of non-repairable primary failures, 

Q(t) = J h’(t’) dt’ (93) 
0 

and 

Q(t) = 1 - exp (- J A(t’) dt’) . (94) 
0 

Q(t) in table 3 thus equals the accumulated number of 
occurrences of the mode failure and also equals the 
occurrence probability for the mode failure. 

In table 4, which gives the top failure character- 
istics, the upper bounds AU,(t), W:(t), and Q:(t) are 

those given by eqs. (90), (86), and (49), respectively. 

It was stated that these bounds are excellent approx- 
imations for the respective true values when the pri- 

mary failure existence probabilities are near zero, and 

in fact these bounds approach the true values as the 
existence probabilities approach zero. This is evident 
from the table since these upper bounds depart from 

the exact values as t increases. Even at t = 1 O4 hr, 
when the maximum primary failure existence pro- 
bability equals 2.95-01 (for primary failure 4) which 
indeed is not near zero, the upper bounds are still 
fairly good approximations. The Qo(t) envelopes in 

table 4, Qo(f)max and Qo(t)tin are those given by 
eq. (41) and (42), respectively. The first two brackets 
for W,(t), eqs. (79) and (81) behaved in an analogous 
manner to the Qo(t) envelopes. As was discussed, the 

bracketing procedure gains in efficiency as the prima- 

ry failure existence probabilities approach zero. How- 
ever, even the first two brackets for Qo(t) are still fairly 
close to one another at t = lo4 hr. Taking more 

brackets (considering more terms in eqs. (40), and 

(76)-(78)) would yield tighter envelopes; in fact, the 
exact values of table 4 were obtained by considering 
all terms in these equations. 

Finally, in table 4, a Monte Carlo run was made 

to verify the results from the KITT code. The column 

MC Qo(f) gives these results; all the values obtained 
had errors (standard deviations) less than 1.5%. The 

Monte Carlo approach is quite time-consuming, but 
if run properly also gives the “exact” answers - 

within the statistical errors associated with a Monte 
Carlo result. The methodology presented here, of 

course, has the advantage of obtaining the exact 

answers with no statistical error and in little computer 
time. In a large number of problems, however, the 

Monte Carlo approach was used to verify this metho- 
dology. As exemplified in table 4, the Monte Carlo 
results always agreed with the results obtained by the 
KITT codes. 

The output in tables 3 and 4 demonstrates the 
complete and detailed type of information yielded by 
the Kinetic Tree Theory methodology. Even though 
a “sample” fault tree was analyzed, the tree being 

quite simple in its logic, the same type of information 
will be obtained regardless of the complexity and size 

of the fault tree. Moreover, the information is self- 

explanatory and “physical” in nature. For example, 

for mode failure 1 of the sample fault tree (table 3), 
t 

1 - exp(- J A(t’) dt’) 
0 

which in this case equals Q(t) simply gives the proba- 

bility that the mode failure will occur at all to time t; 

Jt w(t’) dt’ 

0 

again in this case equalling Q(t) simply gives the 
number of times the mode failure will occur; and 
Q(t) simply gives the probability of the mode failure 
existing at time t. In addition, the characteristics 
A(t) and W(t) give the pointwise behavior of this 
mode failure. This same information is obtained for 
each primary failure, each mode failure or critical 
path, and finally for the top failure itself. Since the 
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Table 5 

Primary failure and mode failure characteristics for the repairable sample tree 

Characteristics for primary failure 1 Characteristic for primary failure 4 

4) 
TX 103 hr) (hr-‘) 

q(t) w(O, 0 1 -f(o, 1) 
w(t) (hr-‘) 40) w(O, 0 1 -AO, 0 

0.0 2.60-06 0.0 0.0 0.0 3.50-05 0.0 0.0 0.0 

0.003 2.60-06 7.80-06 7.80-06 7.80-06 3.50-05 1.05-04 1.05-04 1.05-04 

0.006 2.60-06 1.56-05 1.56-05 1.56-05 3.50-05 2.10-04 2.10-04 2.10-04 

0.024 2.60-06 6.24-05 6.24-05 6.24-05 3.50-05 2.10-04 8.40-04 8.40-04 

1.0 2.60-06 6.24-05 2.60-03 2.60-03 3.50-05 2.10-04 3.50-02 3.44-02 

2.0 2.60-06 6.24-05 5.20-03 5.19-03 3.50-05 2.10-04 7.00-02 6.76-02 

10.0 2.60-06 6.24-05 2.60-02 2.57-02 3.50-05 2.10-04 3.50-01 2.95-01 

Characteristics for mode failure 1 Characteristic for mode failure 4 

WV) 
ix lo3 hr) (hr-‘) e(t) WO, 1) 1 -F(O, I) w(t) 

w-l) 
Q(t) wK4 t) 1 -F(O, t) 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.003 4.06- 11 6.08-l 1 6.08-l 1 6.08-11 7.35-09 1.10-08 1.10-08 1.10-08 
0.006 8.11-11 2.43-10 2.43-10 2.43-10 1.47-08 4.41-08 4.41-08 4.41-08 
0.024 3.24-10 3.89-09 3.89-09 3.89-09 1.47-08 4.41-08 3.09-07 3.09-07 
1.0 3.24-10 3.89-09 3.21-07 3.21-07 1.47-08 4.41-08 1.46-05 1.46-05 
2.0 3.24-10 3.89-09 6.45-07 6.45-07 1.47-08 4.41-08 2.93-05 2.93-05 

10.0 3.24-10 3.89-09 3.24-06 3.24-06 1.47-08 4.41-08 1.47-04 1.47-04 

Table 6 
The top failure characteristics for the repairable sample tree 

(‘x lo3 hr) 

0.0 0.0 0.0 0.0 0.0 0.0 
0.003 2.22-08 2.22-08 3.33-08 3.33-08 3.33-08 
0.006 4.43-08 4.43-08 1.33-07 1.33-07 1.33-07 
0.024 4.50-08 4.50-08 1.44-07 9.37-07 9.37-07 
1.0 4.50-08 4.50-08 1.44-07 4.49-05 4.49-05 
2.0 4.50-08 4.50-08 1.44-07 8.99-05 8.99-05 
3.0 4.50-08 4.50-08 1.44-07 1.35-04 1.35-04 
4.0 4.50-08 4.50-08 1.44-07 1.80-04 1.80-04 
5.0 4.50-08 4.50-08 1.44-07 2.25-04 2.25-04 

AoW 
m-l) 

w($o 
m ‘1 w($o, 0 1 - F()(O, 0 

10.0 4.50-08 4.50-08 1.44-07 4.50-04 4.50-04 
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information is obtained as a function of time, the 

complete history of each type of failure is determined, 
This time dependency is quite important. For exam- 

ple, the importance of the mode failures may change 
in time - a particular mode failure may be of little 

importance at one time and yet, at a later time may 

become the most probable mode by which the top 
failure will occur. 

The detailed quality of the information obtained 
makes it apparent for the sample fault tree that mode 

failures 4, 5 and 6 are the most probable modes by 

which the top failure will occur, being 100 times 

more probable than mode failures 1,2 and 3. If the 

probability of the top failure occurring was deemed 

too high, then design modifications would be 
centered around these most probable mode failures. 

Also, if the top failure had occurred, the primary 
failures in these most probable mode failures should 

be those first checked as to the causes of the top 
failure - the information obtained thereby giving 

optimal repair schemes. 

The information obtained also makes apparent 
the effect of repair with regard to the fault tree. For 
example, for the sample fault tree, if primary failures 
1, 2, and 3 could be detected and repaired in 24 hours 
and primary failures 4, 5, and 6 could be detected and 
repaired in 6 hours then the sample fault tree would 

have the characteristics shown in tables 5 and 6. For 
these tables, the input to KITT-1 was the same as 

for the non-repairable tree (the same primary failure 

rates and mode failures were used) except that each 
primary failure was assigned a constant detection plus 

repair time as given above. 
In table 5, ~(0, t) equals the accumulated number 

of times the primary failure occurs to time t 

40, t) = Jr w(t’) dt’ . 
0 

Also, 1 -flO, t) equals the probability that the primary 

failure will occur at all to time t 

1 -f(O, t) = 1 - exp(- Jr h(t’) dt’) 
0 

Analogous nomenclature is used for the mode failures; 

t 
W(O,t) = J W(t’) dt’ , 

0 
and 

I - F(0, t) = 1 - exp(- Jr A(t’) dt’) . 
0 

These quantities are no longer equal to the respective 
existence probabilities (s(t) or Q(t)) since the primary 
failures are now repairable. The failure rates, h(t) for 

the primary failures and A(t) for the mode failures, 
are not given in table 5 since they have the same value. 

to three significant figures, as the corresponding fail- 

ure intensity (w(t) or IV(t)). Again, primary failures 
1, 2, and 3 and primary failures 4,5 and 6 have the 

same characteristics; also mode failures 1, 2, and 3 

and mode failures 4, 5, and 6 have the same charac- 

teristics. 

In table 6, Wo(O, t) is the accumulated number of 

times the top failure occurs to t 

W,(O, t) = .f w,(t’) dt’ , 
0 

and 1 -F,(O, t) is the probability of the top failure 

occurring at all to time t 

1 -Fo(O, t) = 1 -exp(- J A,(t’) dt’) 

0 

Since the characteristics have a different behavior 
when the primary failures are repairable, a number 
of different time points are given in table 6 (and 
table 5). It is noted that since the maximum repair 
time for a primary failure is 24 hours, the top charac- 
teristics A,(t), W,(t), and Qo(t) remain constant for 

t > 24 hr (i.e., assume their steady state, asymptotic 
values). This achievement of steady state is also 

exhibited by the analogous mode failure and primary 
failure characteristics (table 5). The upper bound 

approximations for A,(t), IV,(t), and Q,(t) (eqs. (90), 
(86), and (49) respectively) are not given in table 6 

since they agreed to four significant figures with the 
exact values given in the table. Similarly, the first two 

envelopes given by eqs. (41) and (42) or by eqs. (79) 

and (81) are not given since they agreed with each 
other, and with the respective exact value, to four 
significant figures. Because the primary failure exis- 
tence probabilities are now near zero (table 5), and 
remain there for all time, the upper bounds and the 
bracketing procedure are extremely accurate and effi- 
cient - for all the time points. In general, regardless 
of the size and complexity of the fault tree, the 
simple upper bounds are accurate “scoping” approxi- 



TIME-DEPENDENTMETHODOLOGY 359 

mations, and the bracketing procedure is an extremely 

efficient method of converging to the exact values. 
From tables 5 and 6, and comparing with tables 

3 and 4, the detailed effect of repair is immediately 
made obvious. How the primary failure characteristics 
respond, how the mode failures (critical paths) change 

in importance, and how the top failure characteristics 
change in value are all made evident. Different repair 
times could be assigned to determine their effect, or 

only certain primary failures could be repairable while 

others would remain non-repairable. Similar studies 

could be made by varying the primary failure rates 

(e.g., what is the effect of using more reliable compo- 

nents). In the KITT-2 code, where the primary failures 
may have phases, the effect of different environments 

could be analyzed. These comparative studies, or sen- 

sitivity studies, are now completely feasible because 
of the detailed results obtained and the small computer 

times needed. For the above two problems, the total 

computer time needed for the PREP and KITT codes 
was under 0.08 minutes. In general, for large fault 

trees (500 primary failures) the total time needed is 

on the order of 1 minute for each case studied (inde- 
pendent of the number of time points used). 

The above sample studies serve to demonstrate the 
amount of information obtained for any fault tree 

from the “Kinetic Tree Theory” methodology devel- 
oped here. The PREP and KITT codes are presently 
being used in a routine manner for the reliability and 
safety analyses performed at the National Reactor 

Testing Station. Fault trees consisting of up to 1800 
primary failures and 1.500 gates have been evaluated 

using the PREP and KITT codes. The information ob- 
tained for these fault trees was exactly the same as that 
obtained for the sample studies; timedependent char- 

acteristics were obtained for each primary failure, for 
each mode failure and for the top failure. The fault 

trees consisted of various mixtures of non-repairable 
and repairable primary failures; failure rates used for 
the primary failures ranged from 1.0-10 hr-l to 1.0- 

02 hr-l and repair-plus-detection times ranged from 
one hour to l.OtO4 hr. For these fault trees, the pri- 
mary failure, mode failure and top failure characteris- 
tics were obtained at up to 200 time points arbitrarily 
spaced, the spacing between time points ranging from 
0.1 hr to 1.0+03 hr. In addition, multiphase fault trees 
have been routinely evaluated, with the number of 
phases, ranging from 2 to 45. The average total com- 

puter time needed to obtain the complete information 

described, for 100 time points, was on the order of 

one minute for a 500 primary failure tree. 
Reactor scram systems, pressure reduction sys- 

tems, and isolation containment systems are examples 

of the systems for which fault trees were evaluated. 
The evaluation of these fault trees was used to quanti- 

tatively determine the safety and reliability of the 
respective systems. Comparative studies were made 

to determine the effects of certain design changes, 

to determine optimal maintenance intervals, and to 

determine optimal monitoring and repair schemes. 
Because the methodology developed here readily 

lends itself to being automated, as exemplified by the 
PREP and KITT codes, these evaluations and compa- 

rative studies were extremely simple to carry out. Be- 

cause of the speed and ease with which results are ob- 
tained, and because of the detailed, time-dependent 

information obtained, experience in applying the 
Kinetic Theory methodology has verified its value 
as an extremely useful and simple tool for evaluating 

any fault tree - regardless of its complexity, size, 
type of primary failure repair used, or the number of 
phases assigned for which the primary failure data 

differs. 

6. Summary and conclusions 

A methodology, termed “Kinetic Tree Theory”, is 
presented by which any fault tree can be evaluated. 

The basic approach taken in Kinetic Tree Theory is 

that whether it be for a primary failure, a mode 

failure, or for the top failure, complete information 

is obtained from three characteristics - the existence 

probability, the failure rate, and the failure intensity. 
When these three characteristics are determined for 

a particular entity, that entity being a primary failure, 
a mode failure, or the top failure, then subsequent 
probabilistic information, both pointwise and cumu- 

lative, is obtained for all time for this entity. 
In the Kinetic Tree Theory methodology, the 

probabilistic characteristics are determined by using 

probability analysis on events which occur at a 
general time r or which occur in a general increment 
of time, C to C+ dt. Complete information is thus ob- 
tained for all time, and this information is obtained 
simply since numerous combinations involving orders 
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of (dt)2 can be neglected. The primary failure charac- 
teristics which are not given as data are determined 

from balance considerations. The balance considera- 

tions incorporate general failure and repair distribu- 
tions. The mode failure characteristics are then deter- 

mined from the primary failure characteristics; this 

determination assumes knowledge of the primary 

failures constituting the mode failure and assumes 

independence of these primary failures. The top 

failure characteristics are finally determined from 
the mode failure information; this information in- 

volves knowledge of the mode failures constituting 
the top failure. 

Thus, given the mode failures (critical paths) of 

the fault tree, complete, time-dependent information 

is obtained for the top failure by proceeding from 
the primary failures to the mode failures and finally 

to the top failure. In proceeding in this stepwise 

fashion, complete timedependent information is 
also obtained for each primary failure and mode 
failure of the fault tree. In application of the Kinetic 

Tree Theory methodology, as exemplified by the 
PREP and KITT codes, the mode failures or critical 
paths are first determined by a deterministic testing 

method or by Monte Carlo simulation (the PREP 
code) and then the characteristics are determined 

according to the Kinetic Tree Theory approach (the 

KITT codes). In the application, the top failure 

characteristics are determined by use of the simple 

upper bound approximations or by use of the bracket- 
ing procedure. The bracketing procedure can be used 

to obtain two simple envelopes, can be carried further 

to obtain higher order envelopes, or can be carried 
to completion by which the exact top failure charac- 

teristics are obtained. 
In application, the Kinetic Tree Theory methodo- 

logy yields numerical results simply automatically, 

and in very little computer time. Because of this 
efficiency and because of the completeness of the 

information obtained, characteristics can not only 
be simply determined for complex fault trees by using 
one set of data, but comparative studies can be simply 
performed to obtain the effect of certain design chan- 
ges, maintenance schemes, or repair schemes. For 
these comparative studies several sets of data would 

be used for the same fault tree or the fault tree itself 
would be modified. The speed by which numerical 
results are yielded, the completeness of information 
obtained, the versatility to handle a wide spectrum of 
fault trees, and the simplicity and automation of 

application make the Kinetic Tree Theory approach 
an extremely useful tool for evaluating fault trees. 
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