2 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-29, NO. 1 APRIL 1980

Difficulties in Fault-Tree Synthesis for Process Plant

P K. Andow
University of Technology, Loughborough

Key Words— Fault-tree synthesis, Control loops

Reader Aids—
Purpose: Explore problem areas
Special math needed: None
Results useful to: Reliability engineers, Designers

Summary & Conclusions—This paper identifies a number of related
difficulties, some of which are still unsolved. Attention is drawn to
failings in the type of pressure-flow model commonly used in the
literature. Difficulties also exist when published algorithms are applied
to control loops. These are illustrated for simple and cascade control
applications and discussed in some detail. Eight general conclusions
are:

1. The concept of 2-way flow of information in failure models is
important in certain situations, e.g., fluid flow.

2. The accuracy of failure models is generally low. This reflects
the fact that much of the effort expended in systematic failure analyses
has been heavily oriented towards algorithms.

3. Models used in failure analyses do not have to be comprehensive.
Only the credible set of events is needed.

4. No always-satisfactory algorithm has been published for fault-
tree synthesis where control loops are encountered.

S. The control loop problem is inextricably interlinked with the
general difficulty that fault-tree methodology is primarily oriented to
binary systems where the time dimension can be ignored.

6. Fault-tree methodology uses simple models to approximate
system failures. If these failures are complex then fault trees might not
be suitable. The results of analyses involving complex failures must be
treated with great care.

7. When fault-tree methodology is not completely suitable one
ought to consider using a different technique altogether. The cause-
consequence diagram might be appropriate since it can be used to study
failure modes where time is important.

8. Algorithms must be carefully examined and properly validated
before widespread use of computer-aided fault-tree synthesis is at-
tempted. If this is not done, computer-aided synthesis will fall into
disrepute.

I. INTRODUCTION

There has been a consistent movement towards improving
the quality of process plant design. The reasons for this derive
mainly from two sources:

1. For purely economic reasons there has been a trend to-
wards larger plants. Many modern plants are single-stream de-
signs. In order to reap the benefits of such designs the plants
must be reliable.

2. For social and economic reasons there is an increasing
interest in plant safety. An abnormal incident may cause
severe damage to the plant in addition to exposing the em-
ployees, and possibly the public, to the risk of injury or death.

Reliability and safety studies can improve the plant design.
Fault trees have been widely used as a tool in such studies.
Various computer codes have been produced to reduce the

large effort required to evaluate fault trees. These cbdes are
concerned with one of two categories:

1. Numeric calculation of the top-event probability, given
failure-data for the components. The quantification of plant
reliability and availability can be a design criterion that the
contractor has to fulfill. The fault-tree evaluation then is a
documentation aid in addition to a design tool.

2. Finding the minimum combinations of failures that will
cause the top-event. In a large reliable system there may be
thousands of minimum cut sets. This type of evaluation brings
the failure mechanism to the analysts’ attention with a strong
emphasis on system failures caused by 1- or 2-event cut sets.

In many studies both types of codes are used, i.e. the cut sets
are found and then the system failure probability calculated. A
common feature of both types of codes is that they are used
to analyse a fault tree. More recently there has been consider-
able interest in the use of computer codes for fault-tree
synthesis because it is a complex and time-consuming task.

Fussell [1] pioneered the work in this area with his Syn-
thetic Tree Model (STM). Features were:

1. Primarily for electrical systems.

2. Logic models used as component transfer functions.

3. Discriminator flags used to ensure internal consistency.
4. Computer code produced.

Tompkins & Powers [2] concentrated primarily on defining
a methodology for synthesis of process-plant fault trees. The
basic theme was similar to Fussell’s [1] except that a func-
tional model was defined which showed the interactions be-
tween process variables. No computer code was produced.

Andow & Lees [3] also used a functional model to define
and synthesize models for the related area of real-time analysis
of process-plant alarms. Features were:

1. Component models were combined to create a network
of nodes and links.

2. Each node represented a variable and each link showed
how one variable effected another in terms of direction of
change and time-lag.

3. Later refined to include magnitude of interactions.

4. Information-flow and process-flow treated as distinct
but related properties of the system.

5. Computer code produced.

The network produced by the code was similar to a signal-
flow diagram. For alarm analysis the network was reduced by
eliminating nodes which represent non-measured variables.
The final network normally contained multiple links between
some nodes; these links represented information paths with
different dynamic characteristics. This representation has
obvious similarities with the fault tree.

0018-9529/80/0400-0002$00.75©1980 IEEE

ANDOW: DIFFICULTIES IN FAULT-TREE SYNTHESIS FOR PROCESS PLANT 3

Martin-Solis et al. [4] have reported further work using
this type of model [3] and demonstrate the basic methodol-
ogy to incorporate these 2-way information-flow models into
a fault tree.

Apostolakis et al. [S] produced the Computer Automated
Tree (CAT) code. Features are:

1. Decision table models contained multiple input and out-
put states suitable for non-binary systems.

2. The code could synthesize trees containing AND gates.
Earlier codes did not do this.

Lapp & Powers (L & P) [6] produced the Fault-Tree Syn-
thesis (FTS) code. Features are:

1. A 2-step method based on constructing a fault-tree from
a directed graph (digraph) which represents the system inter-
actions. The digraph is produced by hand and is similar to the
network used by Andow & Lees [3].

2. Multiple-state values considered for both nodes and
links.

3. No direct account is taken of time, although L. & P.
claim that sequences can be handled by the use of special
models. The process models in the published work show infor-
mation and process flows in the same direction only.

4. Automatic detection of feedback and feedforward loops
and use of this information in the synthesis.

Taylor & Hollo [7] use algebraic component models to
construct a Cause-Consequence Diagram (CCD). The CCD is
the most comprehensive representation. The CCD method fea-
tures:

1. Forward and backward development through time, giv-
ing a more complete picture of system failures—with a corre-
sponding increase in complexity.

2. Applied to chemical, nuclear, and electrical systems.

3. Sequences of events considered.

4. Loops considered.

A number of other papers have been written commenting
on various other aspects of the L. & P. algorithm. These are in-
cluded in the references [8-12] for completeness.

I think that the work on fault propagation and its represen-
tation has reached a point where the basic methodology is
reasonably well understood and tested. The area which has re-
ceived less attention is the production of good failure models.
Ideally the models would be independent of the synthesis
method but, in practice, they are strongly interdependent.

II. INFORMATION FLOW AND MODEL DEFINITION

A. Simple Models

Consider a simple pipeline section which contains a valve.
The pressure decays steadily along the pipeline. If the valve is
closed then the pressure profile becomes quite different. If the
valve closure is an event that can occur in a fault sequence
then the system model must be capable of reflecting the fact
that information must flow both upstream and downstream
from the valve. A typical valve model from the literature is
shown in Figure 1 in decision table form and in the form of a
graph showing the information flow implied by the model.

in Wmzr2

Pl # | O
S3 -0| O

TI O [+l
RV Valve Action [S3-*M2
now HO

Fig. 1. Valve Model

For convenience the L. & P. notation is used. Four features
are important:

1. All of the information flows are in the same direction as
the process flow.

2. The decision table defines the input and output vari-
ables. The model does not show how P1 would change if some
downstream fault caused M2 to be zero.

3. The variables M1 and P2 (logically consistent with the
use of M2 and P1) are not included at all.

4. Only 1 failure is shown.

The inclusion of only 1 failure mode does not necessarily
indicate a poor model, in spite of the fact that a valve can
have many other failure modes. Every model must have its set
of credible events defined. As long as these are properly de-
fined, and the model is used within its limitations, then all
will be well. The model in Figure 1 would be a very poor gen-
eral model because it does not reflect the normal propagation
of pressure information from outlet to inlet. If used in a
library of models for fault analysis it would only be useful if
the analyst were certain beforehand that faults would always
propagate in the same direction as process flows (e.g. in a
fault-tree analysis, this would not be true if the causes of M2
being in a certain state were required). Since normal propaga-
tion is always a credible event general models must show all
such effects.

B. General Models

Figure 2 shows a more general model which, for the pur-
poses of comparison, still includes: a) only 1 failure originating

4 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-29, NO. 1 APRIL 1980

+1
RV FLOW +|

Fig. 2. More General Model

in the valve. b) information flow paths from outlet to inlet for
the 3 primary variables—mass flow, pressure, and temperature.
The model is not perfect, but it is more general and it is cor-
respondingly more complex. Even the structure of the model
is not unique. It could be argued that, for reverse-flow, the
forward and backward paths linking M1 and P2 should be
shown, but this is not so because the model is essentially an
imperfect representation of the pressure-flow behaviour of the
fluid at discrete points, whereas in reality these variables
change continuously along the line. The model is however
adequate for its purpose. In order to verify the model, simula-
tions may be carried out using algebraic and differential equa-
tions containing the same information-path structure. If this
is done for the valve/pipe, then transients can be obtained (for
failures such as pipe break) which lead to reverse flow in parts
of the line.

These transients are qualitatively correct. The quantitative
results obtained obviously depend on flow coefficients and
other factors which are system-dependent and cannot there-
fore be included in a general model. For the valve/pipe model
the type of information required is limited to the simpler
discrete categories HI, NORMAL, LO, NONE, REVERSE, etc.
that are usually encountered in failure analyses. If more
accurate failure information is needed (e.g. for a detailed study
of cooling systems in a nuclear reactor) then the model is not
sufficient. The model does show the dependence of T1 on T2
when the flow is reversed, but does not show the null case
when input and output variables in the flow streams are not
directly related because the valve is tightly shut.

C. Library-Model Conventions

The dashed information paths in Figure 2 are provided by
other models also taken from a library of models. This illus-
trates a further desirable feature of general-purpose models;
they should adhere to a set of conventions so that they are
consistent with each other. Three useful conventions for flow
modeling are:

1. Define all model streams as inputs or outputs in terms
of the design-condition process-flows.

2. Use defining equations to set the pressure variable in
process-flow input streams.

3. Use defining equations to set the mass-flow variable in
process-flow output streams.

This is not the only set of conventions suitable for defining
flows and pressures for this class of problems, but it is often
sufficient. In common with other conventions it is not always
applied, but care is then taken to mark the model.

III. CLOSED-LOOP INFORMATION PATHS

Closed-loop information paths present some difficulties in
fault-tree analysis. Process plants frequently include negative
feedback loops for control purposes. L. & P. [6] have given
some examples of negative and positive feedback and feed-
forward loops. Their approach is based on the use of special
operators that are applied when an event is developed that
lies on a loop. The FTS code searches the digraph model of the
process in order to find and classify all loops. This approach
has been demonstrated in the literature for a simple problem.

If this approach is applied to a digraph assembled from the
type of model shown in Figure 2 then three difficulties arise:

1. Feedback loops appear in the digraph but they are not
control loops in the usual sense. L. & P. published algorithms
do not specifically consider this case although L. & P. recog-
nize the existence of such loops.

2. The digraph contains loops within loops. The published
algorithms refer to this problem but do not clearly define the
solution.

3. Care must be taken in evaluating the resuits produced by
applying fault-tree generation algorithms to control-loops.

This paper defines a modified L. & P. algorithm to handle
the type of model shown in Figure 2. This modification is
minor and overcomes difficulty #1. The algorithm is then
applied to some simple examples. The examples show that
difficulty #?2 is easily overcome and illustrates difficulty #3.

IV. EXAMPLE #1

The very simple digraph shown in Figure 3 demonstrates
the basis of the algorithm. Figure 3 could be handled by the
published algorithms. The digraph represents a flow control
loop; the controlled variable is FC, with unspecified external
disturbances entering at each mode of the loop. Consider the
top event FC(+1). Figure 4 shows the raw tree developed for
this event where, for simplicity, the only credible disturbances
are all moderate (i.e. + 1 or - 1 states) and the negative-
feedback loop components are all correctly installed (i.e. no
reverse components). Each event and gate in the tree is num-
bered in the order in which it was created. Comment boxes
are included as an aid to understanding the logic used to build
the tree. Figure 5 shows the same tree after being reduced by
removing:

1. Normal condition events

2. Inconsistent events

3. Single-input gates

4. Event description boxes

ANDOW: DIFFICULTIES IN FAULT-TREE SYNTHESIS FOR PROCESS PLANT 5

2

Fig. 3. Digraph for Flow Control Loop

The event and gate numbers of Figure 4 are retained for the
purpose of comparison. The layout of the tree is similar for

the same reason.
[Fee |
2

Fig. 4. Flow Control Loop —Original Tree

FaA)
ay

FEEI 1

4]

zo

Fig. 5. Flow Control Loop— Reduced Tree

There are 2 points of particular interest in the final tree:

1. The intermediate abnormal condition events FE(+1)
and FM(-1) are retained. The modified algorithm generates
these events in the original tree. It is important that the
algorithm generates them because they might be needed for
consistency checks in a complex system. (The retention of
these conditions in the final tree is a matter of choice but I
prefer it as an aid to understanding the failure mechanisms,
with only a small overhead in terms of complexity of repre-
sentation).

2. The set-point change FSP(+1) appears as a 1-event cut-
set. No loop failures have occurred. The event is shown be-
cause it demonstrates a mechanism for the propagation of a
disturbance (which can be a failure) through the loop, to the
variable of interest. The events E(+1) and D(-1) appear as
1-event cut-sets. These events are failures.

V. EXAMPLE #2

Figure 6 shows a more complex digraph constructed by
building an outer loop around the one used in Example #1.
Figure 6 represents a cascade control-loop commonly found
in process plants. The inner loop controls a flow. The outer
loop controls a level by means of the flow loop. Single letters
are again used to represent external disturbances. I prefer this
representation to the use of specific failure events (such as
VALVE MECHANISM FAILS OPEN) in order to clarify the
mapping from the digraph to the fault tree.

Figure 7 shows the reduced tree for this example. Compari-
son with Figure 5 shows how the tree generated for the inner
loop fits into place. The trees are all laid out such that:

1. Process disturbances are developed on the lh.s. of the
diagram.

2. Set-point and other similar disturbances are developed
in the centre.

3. The flow of disturbance information around the loop
is developed on the r.hs.

These layout conventions are for the convenience of the
analyst, particularly in regard to ease of assimilation of the
final trees.

0 BR F/C

5>

Fig. 6. Cascade Control System Digraph

[Leen]s
N
[Feen b3
AT
|
[Few Jos
G e
FM(-1) (31

@9 @zo 21 2 j7 23
o
@35 LE(+1) |38

40 4I

Fig. 7. Cascade Control System—Reduced Tree

VI. THE MODIFIED ALGORITHM

The algorithm used to generate all of these trees is shown in
flow-chart form in Figs. 8 and 9. It emphasises the effects of
relatively small changes in process variables (i.e. the +1 and -1
states of digraph nodes). The L. & P. algorithm emphasizes
two other types of events:

1. Large disturbances (+10 and -10 states of nodes) which
the loop cannot compensate. This type of disturbance is
effectively handled by the L. & P. algorithm and is not con-

sidered further here.

Generate digraph from unit
models and topology

+

Mark all control loops and
pracess variables on digraph

<

Select node and state representing
top event. Designate as
“current” node

v

Y Does node lie N
on control loop?

Use standard method to
add causes that do not
violate consistency

Apply appropriate
loop algorithm

L T

Any more nodes
to develop?

Select new
““current’’ node

L

Fig. 8. Basic Fault Tree Synthesis Algorithm

IEEE TRANSACTIONS ON RELIABILITY, VOL. R-29, NO. 1 APRIL 1980

Create OR gate with output to the
current node

N.B. If loops are nested always treat nodes on
both loops as inner loop nodes. Treat outer
loop as disturbance to inner loop.

Do any disturbances
enter loop here?

Is the node a
process node?

Add all disturbances which
enter loop at this node to
the current node OR gate
{as long as consistency
checks are not violated),
with corresponding fault
states.

Create an AND gate with output to the current node OR gate.

1st input to the AND gate is an OR gate whose inputs are all distur-
bances which enter the loop at this node.

2nd input to the AND gate is an OR gate whose inputs are all the
gain = 0 failure paths on that part of the loop not yet encountered,
and those on any loops within that currently being developed.

v
4

Any more%

this loop? -

Create an AND gate with output to the current node OR gate.

Ist input to the AND gate is the “loop normal” condition between
the current node and the previous node, working back around the
loop.

2nd input to the AND gate is the fault state of the previous node.

Fig. 9. Algorithm for Development of Node on Feedback Loop

2. Those related to reversed components which cause loop
malfunctions. This type is more amenable to treatment using
proof-testing at installation or repair time.

The modified algorithm is only intended as a tool to
generate the examples for this paper and omits these last two
categories of events.

The algorithm is only intended for negative feedback loops
since this type of loop is commonly encountered. This paper is
primarily oriented to this type of loop.

VII. DISCUSSION

A. Time-Base Failures

The apparent simplicity of the example fault trees hides the
following implicit assumptions. The modified algorithm in-
cludes all zero-gain failure modes on the loop as input to the
AND gate used for process node disturbances. This gives cut-
sets 1 and 2 in Table 1. These failure modes are easily accepted
as causes of the top event FC(+1). The same failure modes
appear as cut-sets 5 and 6 in Table 2. Cut-set 5 can be readily
visualised as a cause of the top event LC(+1). Cut-set 6 is less
obvious. The difficulty arises because of the loop-within-a-
loop structure of Example #2. The cases for and against in-
cluding cut-set 6 are:

ANDOW: DIFFICULTIES IN FAULT-TREE SYNTHESIS FOR PROCESS PLANT 7

Table 1
Cut Sets for FC (+1)
1. F(+1) AND BR F/C 4. E(+1)
2. F(+1) AND BR F/S 5. D(-1)
3. FSP(+1)
Table 2
Cut Sets for LC (+1)
1. G(+1) AND BR F/C 8. F(+1) AND BRL/S
2. G(+1) AND BR F/S 9. E(+1)
3. G(+1) AND BR L/C 10. D(-1)
4. G(+1) AND BR L/S 11. C(+1)
5. F(+1) AND BR F/C 12. LSP(+1)
6. F(+1) AND BR F/S 13. B(+1)
7. F(+1) AND BR F/S 14. A(-1)

1. If the flow sensor fails and the disturbance event F(+1)
occurs, then the inner loop fails, FC(+1) will occur and cause
LC(+1). The action of the outer loop is irrelevant since if the
inner loop were not required then it should be left out of the
control scheme altogether. Cut-set 6 is therefore a valid cause
of LC(+1).

2. Cut-set 6 describes a failure of the inner loop. When this
failure occurs FC(+1) can occur but the outer loop will pre-
vent LC(+1) from occurring. This does not mean that the
inner loop is not needed. The inner loop speeds up the control
system response to events such as F(+1) in the normal situa-
tion where both loops are operative. Cut-set 6 is therefore not
a valid cause of LC(+1).

In general it is not possible to resolve these two points of
view without further knowledge of the system. The modified
algorithm employs the pessimistic rule that the failure mode
should be included unless it can be shown to be incorrect. This
reinforces the point made in section II that the graph is an
imperfect model of the system. If the inner loop controls the
flow FC that disturbs the level LC, then there is an implied
integration (with respect to time) that is missing from the
graphical representation. It would not be particularly useful
if it were included in the graph since the graph itself is a half-
way stage to the formal fault-tree which is similarly devoid of
time-base information.

It may be argued that the philosophy is inconsistent. If
time-base information is relevant, then the fault-tree method-
ology should be extended to reflect this requirement. Un-
fortunately this extension is non-trivial since much of the
theory on which fault-tree manipulation is based is invalidated
by introducing a time-base. (For instance the two events X
and NOT X are mutually exclusive in the conventional fault-
tree. If a time-base is introduced then the two events can
occur, in the same branch of the tree, provided that the times
of occurrence do not overlap). It can also be argued that it is
self-defeating to complicate the tree with a time-base, since
one of the primary objects of tree construction is to produce a
simple and clear representation of system-fault behavior.
Control loops are comparatively sophisticated devices and can
exhibit complex transient behavior, particularly when multiple
loops interact with one another.

This time-base discussion suggests that there is an inherent
mismatch between the problem and the tool being applied. A
more complex tool, such as the Cause-Consequence Diagram
should be used, if a time-base is important. A more optimistic
conclusion is that there are some problems involving control
loops which can be treated using fault-trees, but that the
results need to be reviewed with great care. The contradiction
between these conclusions reinforces the point that a fault-
tree, like any model, is an approximation to reality. When a
model is used for design purposes (i.e. in a predictive mode) its
capabilities are limited by:

1. The correlation between the model and reality.

2. The accuracy required by the prediction.

The major inherent limitations of the conventional fault-
tree model are:

1. There is no time-base in the fault-tree.

2. The fault-tree is oriented to discrete-state problems.

3. The fault-tree is most useful when applied to binary-
state problems.

In practice many successful analyses have violated one or
more of these limitations. All electro-mechanical systems
exhibit dynamic responses which violate the time-base limita-
tion and yet most examples in the literature are based on such
systems. In these cases the approximation is valid in the con-
text of the problem. If the basic fault-tree methodology is
applied to control loops which have complex transients, then
the approximations made must be borne in mind, and the
results reviewed accordingly.

B. Cut-Set Failures

A further point arises in the 2-event cut-sets shown in
Tables 1 and 2. The 2-event cut-sets all assume that:

1. A disturbance occurs.

2. The loop is broken and so cannot respond.

The loop-broken events all have a link-gain of zero in the
digraph. This implies that the signal at the output node re-
mains fixed irrespective of changes of the input node signal
(Sensor stuck is an example). Consider two cases:

1. The plant is running very steadily. The loop failure oc-
curs. At some later time the disturbance occurs. This sequence
is quite correctly represented as a 2-event cut set.

2. The plant is subject to small disturbances affecting the
loop. This is normal since the control loop is provided to
smooth out such disturbances. After one particular disturb-
ance occurs, the loop responds to maintain the desired value
of the controlled variable. At some later time the loop fails.
Later still the disturbance dies out (or even changes sign). The
loop cannot respond but the controlled variable now moves
away from its desired value. At this point only 1 failure-event
exists and the 2-event cut set representation is wrong.

This illustrates a weakness of the modified (and original)
algorithms. The basic problem is again that time is an im-
portant consideration in the scenario given above, viz the
time-order of events matters. Algorithms which lead to the
type of 2-event cut sets shown in Tables 1 and 2 are inherently

8 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-29, NO. 1 APRIL 1980

optimistic in that they predict a relatively low-probability
2-event failure mode when a l-event failure mode might
occur.

C. Quality of Computer-Aided Synthesis

Most of the recent work on fault-tree synthesis has been
carried out in academic institutions. Significant advances have
been made. The L. & P. algorithm (on which most of the com-
ments in this paper are based) potentially covers many real-
life problems. I believe that none of the published algorithms,
including the modified one used here, is good enough for wide-
spread use by everyone in real applications. The danger with
computer-aided synthesis is that the results might not always
be checked carefully (this comment applies to all computer-
aided syntheses, not just to fault-tree synthesis). Computer-
aided fault-tree synthesis will fall into disrepute if it is widely
applied before the technology is fully developed.

The previous statement is particularly true of any aid used
in safety and reliability analyses. There is also a philosophical
difficulty when computer-aided synthesis methods are applied
to real plants. Consider two extreme viewpoints:

1. If unproven techniques are applied then the results have
to be checked so carefully that computer-aided synthesis is
best considered as an independent check.

2. If proven techniques are applied so that we are certain
that high-quality trees are produced then, in practice, less
human effort will be expended on safety studies. This is
counterproductive because the real value of drawing fault-
trees was that the analyst gained a good insight into system
behavior.

I believe that there is a place for computer-aided synthesis
between these two extremes. As a design evolves a skilled
analyst can use computer-generated trees to find high-probabil-
ity failure modes. These failure modes can be eliminated by
design changes and new trees generated quickly, as a check.
This style of use still involves considerable human interaction
but also requires that the analyst be confident of high quality
computer-aided analyses.

I believe that the published algorithms are not yet of suf-
ficiently high quality for general use. Criteria must be estab-
lished so that algorithms can be evaluated. Algorithms must be
examined independently, debated at a detailed level and test-
cases applied. This paper contributes to the validation debate.

ACKNOWLEDGMENTS

I am grateful for the following support:

1. From the Science Research Council for the related
project “Alarm Analysis using a Process Computer.”

2. From NATO for allowing me to attend the 1978 Ad-
vanced Study Institute “Synthesis and Analysis Methods for
Safety and Reliability Studies.”

3. From Professor D.C. Freshwater and Professor F.P. Lees
for providing research facilities within the Department of
Chemical Engineering at Loughborough University of Tech-
nology.

References

[1] J.B. Fussell, “Synthetic tree model—a formal methodology
for fault-tree construction,” Aerojet Nuclear Report ANCR—
1098, 1973 March. Available from National Technical Informa-
tion Service; U.S. Dept. of Commerce; 5285 Port Royal Road;
Springfield, Virginia 22151 U.S.A.

[2] G.J. Powers, F.C. Tompkins, “Fault-tree synthesis for chemical
processes,” AICHE Journal, vol 20, 1974 Mar, pp 376-387.

{31 PXK. Andow, F.P. Lees, “Process Computer Alarm Analysis:
QOutline of a Method Based on list Processing,” Trans I. Chem. E.,
vol 53,1975 Oct, pp 195-208.

[4] G.A. Martin-Solis, PX. Andow, F.P. Lees, “An approach to
fault tree synthesis for process plants,” in “Proc 2nd Interna-
tional Symposium on Loss Prevention and Safety Promotion in
the Process Industries,” Heidelberg 1978. Available from:
Dechema; Deutsche Gesellschaft fur chemishces apparatewesen;
Frankfurt (MAIN), Fed. Rep. Germany.

[S] G.E. Apostolakis, S.L. Salem, J.S. Wu, ““CAT: A Computer Code
for the Automated Construction of Fault Trees,” Report No.
EPRI-705, 1978. Available from: Electric Power Research
Institute; 3412 Hillview Avenue; Palo Alto, California 94304
U.S.A.

[6] S.A. Lapp, G.J. Powers, “Computer-aided synthesis of fault-
trees,” IEEE Trans. Reliability, vol R-26, 1977 Apr, pp 2-13.

[7] J.R. Taylor, E. Hollo, “Algorithm and programs for conse-
quence diagram and fault tree construction,” Report No. Riso-
M-1907, 1977. Available from: Library of the Danish Atomic
Energy Commission; Riso; DK-4000 Roskilde, Denmark.

[8] E.J. Henley, H. Kumamoto, “Comment on: Computer-aided
synthesis of fault trees,” IEEE Trans. Reliability, vol R-26,1977
Dec, pp 316-317.

[9] M.O. Locks, “Synthesis of fault trees: An example of non-

coherence,” IEEE Trans. Reliability, vol R-28, 1979, Apr,

pp 2-5.

H.E. Lambert, “Comment on the Lapp-Powers Computer-aided

synthesis of fault trees,” IEEE Trans. Reliability, vol R-28,

1979, Apr, pp 6-7.

T.W. Yellman, “Comment on: Comment on computer-aided

synthesis of fault trees,” IEEE Trans. Reliability, vol R-28,

1979, Apr, pp 10-11.

S.A. Lapp, GJ. Powers, “Update of Lapp-Powers fault-tree

synthesis algorithm,” IEEE Trans. Reliability, vol R-28, 1979,

Apr, pp 12-15.

(10]

(11]

(12]

KEY FOR FIGURES

Links:

Solid arrows are links defined within model
Dashed arrows are links defined by adjacent models

Link gains:

0 No interaction

1 Moderate change in cause node gives moderate change
in effect node

10 Moderate change in cause node gives large change in
effect node

+ Change in same direction

- Change in opposite direction

Node names:
M1, M2 Mass Flows
P1,P2 Pressures

ANDOW: DIFFICULTIES IN FAULT-TREE SYNTHESIS FOR PROCESS PLANT 9

T1,T2 Temperatures
S3 Control signal
FSP, LSP Set Points
FE,LE Errors

FM, LM Measurements
FC,LC Controlled Variables
AB...... G Disturbances
Abbreviations:

BR Broken

RV Reversed

DIST Disturbance

u/sS Upstream

N/C Not Controlled

F/C Flow Controller
F/S Flow Sensor

Level Controller
Level Sensor

L/C
L/S

BIOGRAPHY

Dr. Peter Andow; Chemical Engineering Department; University of
Technology; Loughborough; Leicestershire LE11 3TU; United King-
dom.

Peter Andow is a Lecturer in Chemical Engineering at the University
of Technology, Loughborough. He is studying fault propagation in
process plants for design and real-time purposes. He received a B.Tech
from Loughborough, MChE from Delaware and PhD from Lough-
borough. He has worked as an engineer with Unilever on food and
detergent products and as a system safety engineer with British Nuclear
Design and Construction.

Manuscript TR78-149 received 1978 November 13; revised 1979 May
12,1979 July 17. Ve e

Book Review

MDR-12, Digital Failure Rate Data
David B. Nicholls, 1979, $50.00 (nonUSA $60), 412 pp.
Reliability Analysis Center; RADC/RBRAC;
Griffiss AFB, NY 13441 USA.

Table of Contents

1. Digital Summarized Data
Introduction
Summarized Generic Failure Rates - Field Data
Digital Microcircuit Observed and

MIL-HDBK-217B Predicted Failure Rates
Summarized Generic Replacement Rates -
Field Data
Summarized Generic Failure Rates - Reliability
Demonstration and Equipment Checkout Data
Summarized Generic Failure Rates -
Life Test Data

2. Digital Device Data - Detailed Listings
Introduction and Usage Guide
CMOS, PMOS, DTL, ECL, TTL high speed (HTTL),
TTL low power (LTTL), TTL Schottky (STTL), TTL
low power Schottky (LSTTL), TTL SUHL, TTL

This report is apparently an updating of MDR-8 with
the same title from 1978, although this fact is not
stated explicitly. This report, and this kind of report in
general, are good in that they summarize many data
that would otherwise not be accessible to many engi-
neers. They are capable of gross misuse by those who
interpret the numbers as some kind of truth table for
the future. The quality and reliability of purchased
devices is affected by a tremendous number of variables
which are beyond the control of the user; screening and
testing can help of course, but there's at least a little
blind luck involved from the user's point of view.

The user of this report does not know many pertinent
facts about the failed items, especially as contrasted
with the devices he will be using. But the data and
summaries in this report can give a rough idea of what
to expect and what to watch out for. Even those
companies who keep great amounts of their own data
can profit from comparing their data with this report.
The comparisons of "predicted by MIL-STD-217B" with
several kinds of experience are especially helpful.

140 pp

266 pp

Ralph A. Evans, Product Assurance Consultant

Many of the categories have very few failures (e.g.,
less than 10). That means the statistical uncertainty is
very great. The report uses a symmetric 60 percent
statistical confidence interval as the measure of uncer-
tainty. That is a low value of statistical confidence, but
is used (unwisely, I think) to keep the interval reasonab-
ly narrow. Generally the instructions and cautions in the
report are good and honest, but they do not lean over
backward to browbeat those who have too much blind
adoration for the printed word.

MDR-13, Memory/LSI Data
Mark R. Klein, 1979, $50.00 (nonUSA $60.00), 209 pp.
Reliability Analysis Center; RADC/RBRAC;
Griffiss AFB, NY 13441 USA.

Table of Contents

Introduction
Definitions of Terms
1. Memory/LSI Summarized Data
Introduction
Summarized Generic Failure Rates - Field Data
Memory/LSI Observed and MIL-HDBK-217C
Predicted Failure Rates
Summarized Generic Failure Rates - Reliability
Demonstration and Equipment Checkout Data
Summarized Generic Failure Rates -
Life Test Data
2. Memory/LSI Data - Detailed Listings
Introduction and Usage Guide
Random Access Memories (RAM)
Read Only Memories (ROM)
Programmable Read Only Memories (PROM)
Shift Registers
Microprocessors
LSI-MSI Complex Standards

This is the same kind of report as MDR-12 reviewed
above on this page. The review for that report holds for
this one except that these devices are even more
complicated (in terms of processing, layout, and number
of elements). Therefore the cautions in the above re-
view should be taken to heart even more strongly. * * *

2pp
2 pp
46 pp

158 pp

