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PREFACE 

The summer of 1974 concluded the first year of the National Science 

Foundation funded study at UCLA entitled "A General Evaluation Approach to 

Risk-Benefit for Large Technological Systems and Its Application to Nuclear 

Power" (NSF Grant GI-39416). The objectives of this project can be defined 

to include the following: 

1) To make significant strides in the provision of improved base~ 

or criteria for decision-making involving risk to the public 

health and safety (where a risk involves a combination of a 

hazard and the probability of that hazard). 

2) To make significant strides in the structuring and development 

of improved, and possibly alternative, general methodologies 

for assessing risk and risk-benefit for technological systems. 

3) To develop improvements in the techniques for the quantitative 

assessment of risk and benefit. 

4) To apply methods of risk and risk-benefit assessment to specific 

applications in nuclear power (and possibly other technological 

systems) in order to test methodologies, to uncover needed 

improvements and gaps in technique, and to provide a partial, 

selective, independent assessment of the levels of risk arising 

from nuclear power. 

The first year's effort has, to a considerable extent, involved reviews 

of some of the several fields of interest to the overall study. Beyond this, 

the work has largely been exploratory in nature and been concentrated in 

specific parts of the overall problem. 
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This UCLA Engineering report is one of a group of several which 

represent either completed reviews or interim reports on those segments of 

the exploratory research which have reached a stage suitable for publica­

tion. Publication of these reports has been expedited, accepting the pos­

sible loss of better editorial form and potential technical improvement, 

in order to make the information rapidly available. 
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1. INTRODUCTION 

The aim of this report is to present in a systematic way the mathematical 

methods which are useful in reliability and safety studies. The bases upon 

which these methods are built are probability theory, statistics and logic. 

In general, the problems that these studies deal with concern the pre­

diction of the probability that a specified function will be performed satis­

factorily over a period of time or per demand and the identification of events 

and their probabilities, which may lead to unfavorable circumstances endanger­

ing the health of the public. 

The vast number of factors that influence the performance of the systems 

which perform the required functions and the impossibility of knowing a priori 

their time-, space- and magnitude-behavior suggest that the natural way to 

handle these problems is through probabilistic methods. The parameters appear­

ing in the analysis are estimated from the past performance of similar systems 

functioning under similar conditions as the system under study. This estima­

tion is, of course, done with the aid of statistical techniques. 

Besides overcoming the problem of needing to know what happens exactly, 

a probabilistic analysis is very useful in that it assigns probabilities to 

the various possibilities whenever known uncertainties are encountered 

instead of assuming that the "worst" will happen. When many events appear 

to be possible at a certain stage of the analysis they are all included in 

it and they are combined with the use of elementary operations of mathematical 

logic. Such a case occurs frequently in the study of complex systems and it 

provides with a systematic way of identifying sequences of events that may 

lead to dangerous situations as well as their probabilities of occurrence. 

These probabilities form the basis of assessing the risk to the public 

(usually risk is defined as the product of the probability of an accident 
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times some measure of its consequences) and accordingly decide to eliminate 

or accept the risk. This decision is made with the use of a prespecified 

criterion, which is possible to establish only because the risk has been 

quantified. 

Unfortunately, despite the merits of probabilistic methods, when one 

tries to apply them in real cases there are serious drawbacks that are 

revealed. The most important is the lack of statistically significant data 

upon which the models can be built. Many systems are new, thus no informa­

tion regarding past experience is available; even standard components of the 

systems may operate under conditions which are unique to the case under study 

thus impairing the validity of existing data; people did not bother or did 

not have the necessary tools to make accurate measurements in the past (e.g., 

earthquake histories are, in general, very poor), and so on. Special stat­

istical techniques are developed to deal with some specific situations, but 

the most common "solution" is to make drastic assumptions and use judgement 

which, of course, reduce our confidence on the methods and their results. 

This report deals mainly with the mathematics involved in quantitative 

assessments. Summaries of illustrative applications are included and refer­

ences to the literature are listed for further details. The second chapter 

describes the methods of handling problems involving one component or simple 

logical configurations and its contents are more or J -.:..:.. . .:: what it is known as 

reliability theory. To make the report self-con_ained an introdu~tion to the 

fundamentals of probability theory and statistics is given; then the moceling 

of the failure of components by statistical distributions is discussed fol­

lowed by the mathematical description of various maintenance policies. Renewal 

theory and Markov processes are examined in detail, since they are important 

mathematical tools in safety studies. 
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The third chapter departs from conventional reliability theory in that 

it deals with the analysis of complex systems. The fault-tree methodology is 

developed in detail and its uses and limitations are investigated, Methods, 

like the failure modes and effects analysis are described even though they are 

not strictly mathematical, because they form an important part of a safety 

study. The special problems arising from software and human errors as well as 

the possibility of common mode failures are also discussed. Finally the use 

of statistical techniques to handle major natural phenomena and methods of 

dealing with systems without exploiting their logical structure are investi­

gated. Throughout the report references are given where a more extensive dis­

cussion of the various topics can be found. 

This report was written prior to the release of Draft WASH-1400 "Reactor 

Safety Study. An Assessment of Accident Risks in U. S. Commercial Nuclear 

Power Plants" and the methodological aspects and applications of WASH-1400 

have not been factored into this report. 
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2. ANALYSIS OF COMPONENTS AND SIMPLE SYSTEMS 

2.A ELEMENTS OF PROBABILITY THEORY AND STATISTICS 

2.A.l The Probability Concept 

In the development of methods for Quantitative Safety Analysis extensive 

use of the concepts of probability Theory ("probability", "event" etc.) is 

made. It is essential that such terms are well understood for a successful 

application of the methods. For a complete analysis of probabilistic ideas 

the reader is referred to the book of Feller1 and for more concise treatments 

2 3 4 to any standard textbook. ' , A brief summary of the important ideas is 

presented here. 

There are various interpretations of probability from the strict 

mathematical formulation to the intuitive concept found in the average person. 

Except for the former the others are incomplete but it is worth mentioning 

them for they help to clarify things. 

Subjective Interpretation: Probability is a measure of the belief that 

a person has to the truthfulness of a certain statement. In this sense prob-

ability reflects one's judgement and state of knowledge. Examples from every-

day life are statements like "I am sure it will rain tonight," "The odds against 

X are four to one" etc. 

Empirical Interpretation: The probability of an event A is the limit of 

n the frequency N as N + oo, where N is the number of times an experiment was 

repeated and n is the number of times the event A occurred. Although this 

interpretation is very common among applied scientists it is not sufficient. 

An obvious limitation is the requirement of having a large number of experi-

mental data; in addition some questions regarding the existence of the above 

limit can be raised. 

Classical Interpretation: If N is the number of all possible outcomes of 

an experiment and the event A can occur n times, the probability of A is i• 
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if all outcomes are equally likely. In this definition the experiment does 

not have to actually be performed. However the assumption of equally likely 

outcomes poses severe restrictions. In many cases it is difficult to estab­

lish its validity or, even worse, it is already known that the outcomes are 

not equally likely (e.g. an experiment with a loaded die). Other objections 

against the classical interpretation2 include the fact that it is circular 

(the statement "equally likely" actually means "equally probable," but it is 

the meaning of "probable" that is attempted to be defined) and that in many 

experiments the number of all possible outcomes is infinite, 

The difficulties which arise with the above definitions have led to the 

axiomatic formulation of the theory of probabilities. This in turn requires 

knowledge of the abstract ideas of measure theory. However it is possible to 

outline the formalism using elementary set theory. This will be done in the 

subsequent sections. At this point it must be emphasized that in the axiomatic 

treatment probabilities are assumed to be given parameters the actual numerical 

values of which are of no concern to the theory, in the same way that masses 

are treated in classical mechanics. 1 

2.A.2 Axiomatic Formulation and Basic Theorems 

In the axiomatic formulation of any branch of mathematics there are 

certain concepts wh.lr.h ao.e considered intuitive and remain undefined (e.g. the 

points of geometry). In probabilities such a conceP!. is that of the sample 

space and sample point. Every possible outcome ot an experiment is represented 

by one and only one sample point; the set of all sample points forms the sample 

space S. An event is defined as a collection of sample points, that is, it is 

a subset of S. For example, the sample space S :: {1,2,3,4,5,6} represents all 

possible outcomes of throwing a die. The subset A= {1,3,5} represents the 

event "the outcome of the experiment is an odd number." 
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From the previous paragraph it is clear that sets play an important role 

in this theory. Therefore some of their properties are of particular interest. 

All the sets will be assumed to be subsets of the sample space S. 

i. The null set contains no sample points. It is denoted as ¢ and it repre-

sents an event that can never happen. 

ii. The complement of an event A, written as A, is the set which contains 

all the sample points of S not in A. 

iii. The union of two events A and B is a third event C consisting of all the 

elements of either A orB or both (taken once). It is denoted as A+B =Cor 

AUB = C. 

iv, The intersection of two events A and B is a third event C, written as 

AB = C or AnB = C, which contains all the common elements of A and B. If 

the intersection of two events is the null set, i.e. AB = ¢, then the events 

are called mutually exclusive. The extension of the properties iii and iv to 

more than two events is straightforward. 

Before proceeding to the definition of probabilities it is important to 

distinguish between two types of sample spaces, those consisting of a finite 

number of sample points and those with an infinite number of sample points. 

For the purposes of reliability analysis this distinction will suffice. 

If the sample space contains a finite number of sample points (e.g. the 

die experiment) any subset of S is an event; to each event A a non-negative 

number P(A) is assigned such that P(S) = 1 and if the events A1 , A2, ... ,An 

are mutually exclusive, i.e. A.A. = ¢for all i and j, then 
~ J 

exclusive events A
1 
•.• An exhaust the sample space, that is, S 

n 
above axioms imply that L; P (A.) = 1 and hence 0 s P (A.) S 1. 

i=l ~ ~ 
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The most important case in reliability of a sample space with infinitely 

many sample points is that of the real line. The time-to-failure of equip-

ments and systems generates such a space. Events are all the points of the 

line, t = t
1

, and all closed or open intervals t 1 ~ t ~ t 2 or t 1 < t < t 2 

respectively. Then probabilities are assigned just as before with an addi-

tiona! axiom: if the events A1, A2, ••• ,An' are mutually exclusive that is 

AiAj = cj> for i,j = 1,2, ••• n •• ., then P(EAi) = f; P(Ai). 
i=l i=l 

The probabilities of events are now given in terms of the density function 

f(t). This is a non-negative integrable and bounded function such that 

P(S) = 100 

f(t)dt = 1. The probability of the event A = t 1 ~ t :o; t 2 is given 

by P(A)~ ~t2f(t)dt. Taking t 2 = t
1 

+£and letting£+ 0 it is easy to 
1 

see that P(t = t 1) = 0. It is clear then that P(t1 s t ~ t 2) = P(t1 < t < t 2). 

One of the axioms in the definition of probability concerns the union of 

mutually exclusive events. In general the events are not mutually exclusive 

and the probability of their union is given by a different formula. For two 

events A and B this formula is 

P (A+B) = P (A) + P (B) - P (AB) • (2.1) 

This relation becomes complicated if more than two events are involved. Thus 

the probability that at least one of the events A1,A2, ••• ,An occurs is 

N N-1 N 
= L: P (Aj ) - ,E :E P (Ai Aj ) + 

j=l i=l j=i+l 

N-2 N-1 N N+l 
+ :E :E :E P(AiAj~) - ••• + (-1) P(A1A2 ... ~) i=l j=i+l k=i+2 

(2. 2) 

In practice such a formula is rarely used as it stands. Very often the main 

contribution to the sum comes from the first several terms. By truncating 

the series bounds are readily obtained, such as 
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N 
p :E 

i=l 
A :s; 

i 

N N N-1 N 
p L Ai ?! :E p (Ai) - :E L 

i=l i=l i=l j=i+l 
P (A.A.) 

1. J 
etc. (2. 3) 

Finally the concept of conditional probabilities is introduced: If 

P(B) ~ 0, the conditional probability of the event A under the hypothesis B 

(or, given that B has occurred) is defined by P(A/B) = :~~)· All the 

theorems of probabilities hold also for conditional probabilities; for 

example 

P(A+B/C) = P(A/C)+P(B/C) - P(AB/C) 

If two events are mutually exclusive, then P(A/B) = P(B/A) = O, since 

P(AB) = 0. If P(AB) = P(A)P(B), the events A and Bare called (stochastically) 

independent 

As an example of the use of conditional probabilities, assume that the 

probability density function of the time-to-failure of an equipment is f(t). 

Then the (a priori) probability that failure will occur in the interval 
t2 

t
1 

< t < t 2 is P(t
1 

< t < t 2) = J f(t)dt. This is the probability of the 
tl 

event "the failure will occur after time t
1 

and before time t 2". A question 

that could be asked now is "assuming that the equipment has already survived 

past the time t 1 , what is the probability that it will fail before time t
2
?" 

This is now a· conditional probability the hypothesis being that t > t
1

. In 

mathematical terms this is interpreted as P(t1 < t < t
2
/t > t

1
). But 

. It 2 f(t)dt roo t 
P(t > t 1) • J~ f(t)dt, therefore P(t1 < t < t 2! t > t 1)= -(-

00
:
1-------

tl Jr f(t)dt 
tl 

If the events A1 , ••• ,An are mutually exclusive and A1+ ••• +~ = S (the 

sample space), an event B can be analyzed in a unique way as B=BA1+BA2+ ••• +B~. 
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From this it follows that P(B) = P(B/~1)P(A1) + P(B/A2)P(A2) + ..• +P(B/~)P(~). 

P(AiB) 
Furthermore P(Ai/B) = P(B) = 

P (B/ Ai)P (Ai) 

P(B) or, using the expression for P(B): 

P(B/Ai)P(Ai) 
p (Ai/B) = -N----..::::......-=---

1: P (B/ Ai)P (Ai) 
i=l 

Bayes' theorem 

2.A.3 Random Variables and Distribution Functions 

(2. 4) 

We have identified each possible outcome of an experiment with a point in 

the sample space. Sets of sample points form events. One way of describing 

events is simply to state in words what they represent, e.g. the event "heads" 

in the experiment of tossing a coin, the event "failure occurs before time t" 

in the study of equipment failure etc. 

This way of identifying events is inconvenient especially in cases where 

the description of an event is lengthy. To simplify things we assign a number 

to each sample point through a unique way, that is we define a function on the 

sample space. Such a function is called a random variable (or, variate). 

As an example consider the failure of equipments; the sample space consists 

of two points: the equipment is functioning and the equipment is failed. A 

random variable which is often defined on this space is 

x- t the equipment is functioning 

the equipment is failed 

In the experiment with the die an obvious random ·,ariable is simplJ the number 

showing on the die, that is X takes on the values {1,2,3,4,5,6}. 

Such random variables which take on a countable number of values are 

called discrete random variables and they are defined on discrete sample spaces. 

If the sample space is continuous (e.g. the real line) the random variable 

will also be continuous and it will take on any value in an interval. For 
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example, the time-to-failure of an item is a continuous random variable 

defined on the positive real axis. 

The representation of events is now greatly simplified with the use of 

ineaualities. Given a random variable X and a number x the notation X ~ x 

implies the event consisting of all the sample points at which X takes on 

values less than or equal to x. With this event we associate a function 

which equals the probability of the event, that is 

F (x) = P (X ~ x) 

and we call it the (cumulative) distribution function of the random variable X. 

From this definition the following properties of distribution functions 

are clear: 

lim F(x) = 0 
X + - co 

lim F(x) = 1 
x+co 

Furthermore F(x) is a nondecreasing function of x. 

This definition holds for both discrete and continuous random variables. 

However the information provided by the distribution function may not be 

enough; we may want to know the probability that X = x (for a discrete random 

variable) or that X falls between x and x + 6x (for a continuous random vari-

able). For this kind of information we must distinguish between discrete and 

continuous random variable. 

The probability function (or probability distribution) of a discrete 

random variable X is defined as 

p (x) = P (X = x) 

and is related to the distribution function by 

F(x) = L: P(x.) 
all 1. 

xi~x 
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Notice that 

As an example we return to the familiar die experiment; assuming that 

all outcomes are equally likely we have the probability function 

X = i = 1, 2, ... 6. 

Then F(3) = P (X ::; 3) 1 = P(l) + P(2) + P(3) = z 
For a continuous variate we define its probability density function (or 

simply, the density function) as (see also 2.A.2) 

f(x) = dF(x) 
dx 

X oo 

Then, clearly, F(x) = f f(x)dx and f f(x)dx = F(00) = 1. The density function 
'-00 '-00 

itself does not have a probabilistic meaning, however f(x)6x is the probability 

that the random variable x falls in the interval (x,x+6x). 

Distributions of continuous random variable are used extensively in 

5 6 7 8 9 reliability as models of the time-to-failure of systems. ' ' ' ' Thus, we 

use the symbol T for the random variable time-to-failure, which has range 

from 0 to 00 , and we define several quantities of interest in the study of 

failures. 

If F(t) is the distribution function of the time-to-failure of an equip-

ment, then the function 
00 

R(t) = 1 - F(t) == f f(t)dT 
t 

is the probability that the equipment will not fail up to tiln.e t and it is 

called its reliability. F(t) is sometimes referred to as the unreliability 

of the equipment. 

Another important function is the hazard rate (or instantaneous failure 

rate, or failure rate function) which is defined as 

12 



f(t) f(t) 
h(t) = 1-F(t) = R(t) (2.5) 

Its interpretation is that if the equipment has not failed up to time t then 

the probability that it will fail between t and t + 6t is h(t)6t, that is, 

it is a conditional probability. 

and 

From the definition it follows that 

fat h(T)dT 
1 - e F(t) = 

J/ h(T)dT 
R(t) = e 0 

Notice also th t h(t) 1 dR(t) 
a = - R(t) dt 

dlnR(t) 
dt 

(2.6) 

(2. 7) 

There is one point which should be clarified here; the expression h(t)6t 

is a conditional probability of failure in (t, t + 6t), but h(t) should not be 

interpreted as a probability density. 2,lO,ll 

To see the difference we need the notion of a conditional probability 

density. From the discussion in (2.A.2) the conditional distribution of the 

time-to-failure of a system given that it has survived past the fixed time t
1 

is t I f(T)dT 
F(t)-F(t

1
) 

F(t!t
1

) 
tl 

= P (T > t
1

) = 1-F(t ) 
1 

0 t < tl 

Then the conditional failure density is 

f dF(t/t 1) 

f(t/tl) = )0 dt 

~ t < tl 

' t ~ tl 

The conditional density has all the properties of a probability density, for 

example 
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* is the probability that the system will fail after time t given that it has 

survived up to time t 1 • 

Observe that if the time t 1 is allowed to vary so as t
1 

= t, then the 

hazard rate results, that is, h(t) = f(t/t), but this is not a conditional 

density anymore because the condition changes with the variable. A conse-

quence of this is that f(t/t
1

) being a density satisfies 

00 

f f(t/tl)dt = 1 
0 

while for the hazard rate we have 

00 

J h(t)dt + 00 

0 

as it can be seen from the fact that 

F(oo) = 1 - exp (-l h(t) dt) = 1 

2.A.4. Measures of Central Tendency and Dispersion 

Of great interest in the study of populations are certain quantities 

which are not as detailed as the distributions but S\®marize important infor-

mation about them and give a feeling to the analyst of the most·important 

properties of the population. 

The most widely used is the expected value (or mean, or arithmetic mean, 

or average), which is defined as 

m = E [X] = 

Jr: xf(x)dx, for a continuous random variable 

L xip(xi) , for a discrete random variable 
all xi 
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If the density function (or the probability distribution) is interpreted 

as a mass distribution, then the expected value corresponds to the center of 

gravity of the distribution. 

Notice that it is possible that the random variable never takes on its 

expected value. For example, when tossing an ideal coin we may describe the 

outcomes through the random variable. 

for "heads" 

X 

for "tails" 

Thus p(l) = p(O) = 1/2 and E[X] 1 • p(l) + 0 · p(O) 1/2 while the random 

variable can be only 0 and 1. 

Besides the expected value there two other measures of central tendency, 

the median and the most likely value, which are rarely used in reliability, 

The median is defined as that point x for which 
m 

F(x ) = P[X ~ x ] = 0.5 m m 

Thus for a continuous random variable it is defi~ed by 

Jl:m f(x)dx 0.5 

and for a discrete random variable by 

The most likely value (or mode) is defined for a discrete random variable 

as the value which has the highest probability and for a continuous random 

variable as the value at which the density f(x) is maximum. 

The quantities defined above do not give any information regarding other 

important properties of the distribution such as its spread, symmetry, peaked-

ness, etc. These can be described with the use of the moments, 
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The nth moment (or, moment about zero) of a distribution is defined as 

J[: xnf(x)dx for a continuous random variable 

l: x~p(xi) for a discrete random variable 
all xi 

Notice that the expected value is the first moment (for n = 1). 

These moments have the disadvantage that they depend on the origin which 

is arbitrarily set; once we find the mean it is more meaningful to work with 

the central moments, that is, moments defined about the mean as follows: 

E [<x-m) nJ = 

Jroo (x-m)nf(x)dx for a continuous random variable 
-00 

E 
all x. 

1. 

(x.-m)np(x.) for a discrete random variable 
1. 1. 

The second central moment (the first is zero) is of particular interest 

to our work; it is called the variance of the distribution and it is a measure 

of its spread. From the above definition it follows that 

jr~ (x-m)
2
f(x)dx , x continuous 

It can be proved that the variance is related to the .o.ean and the second moment 

about zero through 

The square root of the variance is the standard deviation, It has the 

same units with the random variable and it is used extensively as a measure of 

dispersion. In the extreme case where the random variable can take on only 
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one v.alue the standard deviation is zero, as a simple calculation reveals. 

In general it is not zero and, as an example, we mention that for the normal 

distribution (to be defined shortly) the probability that the random variable 

falls between m-3a and m+3a is 0.997. For distributions for which only the 

mean and the variance is known the very general Tchebycheff inequality gives 

lower bounds to the probability that the random variable will take on a value 

in some interval. This inequality states that 

a2 

\)2 
P[m-V <X< m + V] ~ 1 (2. 8) 

2 
where m is the expected value, a the variance and Van arbitrary number. If 

v is measured in units of standard deviation, i.e. V = ka, the inequality is 

written 

P [m-ka < X < m + ka] ~ 1 - l/k2 
(2.9) 

1 Therefore, for k=3 we have 1 - ~ = 0.889 and we say that there is a probability 
3 

of at least 0.889 that the random variable will fall in the interval (m-3a,m+3a) 

for any distribution (for the normal distribution we found that this probability 

was 0.997). 

The third and fourth central moments are related to the symmetry (skewness) 

and peakedness (Kurtosis) of the distribution respectively, but they are not 

used much in reliability. 

2.A.5 Populations and Samples 

Thus far the discussion concerned all possible outcomes of an experiment 

which we represented by points in the sample space and we described their 

properties with the use of the distribution functions; in short, we talked 

about populations and their characteristics. 

In practice we never deal with whole populations, but with small samples 

from them. If we know the characteristics of the population it is a simple 
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matter to make statements about the sample. Thus, if we know the distribution 

of the time-to-failure of a certain type of valves, we can estimate the prob-

abilities of failure as a function of time of a sample of n such valves. 

Ho"1ever the problem we most often encounter is the inverse of the above; 

given the times at which the valves of the sample failed we wish to know the 

distribution of times-to-failure of the population. 

12 First we need some terminology. If the random variables x
1

, ... ,Xn are 

independent and they have the same density function f(x), they are said to 

constitute a random sample. The n values of the above example are a random 

sample. A statistic is a function of one or more random variables that does 

not depend on any unknown parameter. If we estimate a characteristic of a 

population from a sample, the value from the sample is the statistic and the 

estimated characteristic is called a parameter, 

Two very common statistics of a sample are its mean and variance. The 

mean is defined as 
n 

I: x. 
i=l ~ (2.10) 

X = n 

and the variance as 

n 2 :E (x.-x) 
. ~ (2.11) 2 i=l 

s = n 

Out problem can now be stated in mathematical terms as follows: we know 

that the random variable X has a density f(x; e
1

, ... ,en) of known .''orm but 

with unknown parameters and we wish to estimate these parameters from sa~ple 

data. 

There are two methods of approach: 1) we can calculate appropriate 

statistics from the sample and use them as estimates of the parameters of the 

population (point estimation), and 2) using information from the sample we can 
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find ranges of the parameters el, .•• ,en, thus selecting a family of possible 

densities f(x,e 1 , ... ,en). Each set of parameters yields a density which may 

be the density of the population (interval estimation), 

Point Estimation 

There are various way that statistics from the sample can be used as point 

estimates of parameters of the population. To select the appropriate one we 

have several criteria: 

i) the statistic should be unbiased, that is its expectation value should be 

the population parameter. The sample mean is an unbiased statistic, while 

the sample variance is not; however with a slight modification it can become 

unbiased; the appropriate form is 

n 2 :E (xi-x) 
i=l 2 (2 .12) 

s = 
n-1 

ii) the statistic should have variance as small as possible (efficiency 

property). 

Combining these two properties we call a statistic "best" if it is 

unbiased and its variance is smaller than or equal to the variance of any 

other unbiased statistic for the parameter (fact which is not always easy to 

establish). 

The moments about zero are unbiased statistics (e.g. the sample mean) 

but the central moments are not (however we changed the sample variance 

slightly and it became unbiased). 

Having these criteria in mind (especially the requirement that the stat-

istic be unbiased) we describe two common methods of point estimation: the 

moment matching method and the maximum likelihood method. 

In the moment matching method we calculate the theoretical moments of the 

distribution as functions of the unknown parameters and we equate them with 
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the moments of the sample. If there are n unknown parameters, this is done 

for the first n moments (about zero or central) thus yielding a system of n 

equations in n unknowns. Usually there are one or two unknown parameters and 

we use the mean or the mean and the (unbiased) variance respectively. 

In the maximum likelihood method we take as estimate of each parameter 

the value which is most. likely on the basis of the available data. In mathe-

matical terms, suppose we have a random sample x
1

, .•. ,Xn from a density f(x;6). 

W'e form the likelihood function 

(2 .13) 

We now consider the xi's as constants and 6 as a variable. The maximum like­

lihood estimate of 8 is the value which maximizes 1(8; x1 , •.. ,xn). As an 

example, suppose that the density function of the time-to-failure of a popula-

tion is 

f(t;8) = i e-t/8 (exponential density). 

and that we have the sample T1, T2, ••• ,Tn (that is n items failed at these 

times). 

Then the likelihood function is 

The maximum of L is found by simple differentiatior. and the estimate of e is 

n 

which is the sample mean. 
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Interval Estimation 

Here we do not give an estimate of the parameters but a range of possible 

values. This defines a family of possible population distributions. The 

degree of certainty that we have in our assertion that the parameters lie in 

a certain interval is called confidence level. So, we may claim that the 

mean time-to-failure (MTTF) of a population is between 5 x 106 hr. and 9 x 106 

hr. at a 90% confidence level; this means that if we test many samples from 

the population, then their MTTF will fall in the above interval 90% of the time. 

The mathematics of interval estimation is quite involved and will be 

introduced in subsequent sections. 

2.A.6 Some Useful Distributions 

We examine briefly several distributions of discrete and continuous type 

which we will frequently encounter. Their particular uses in the study of 

failures and in reliability will be given in more detail in subsequent chapters; 

here we state only their definitions and the underlying assumptions in each one. 

Discrete Distributions 

1. The Binomial Distribution 

( ) (n) r( )n-r n! pr(l-p)n-r 
p r = r p l-p = r!(n-r)! 

where r = 0, l, ••• ,n and 0 5 p 51 

F(x) x = O, l, ... ,n 

m = np 2 
r:J = np (1-p) 

The binomial distribution is used when an experiment can have only two 

outcomes (which are, naturally, mutually exclusive and exhaustive, like success-

failure, heads-tails etc.); the probability of, say, success is p and of failure 

1-p. The experiment is repeated n times and p is assumed constant throughout 
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(Bernoulli trials); then p(r) gives the probability of exactly r successes 

inn trials and F(x) the probability of at most x successes. 

If we set q = 1-p, it is useful to notice that 

(p+q)n = E (~) 
r=O 

r n-r p q 

Suppose that we have three identical units working in parallel; each has 

a probability p of functioning properly and a probability q of not functioning. 

The system is working if at least two units are "up". It is an easy matter to 

find the reliability of the system using the expansion 

3 3 2 2 3 (p+q) = p + 3 p q + 3 pq + q 

The first and second terms give the probabilities of no failure and one failure 

respectively. Thus the reliability is 

while the probability of system failure (unreliability) is 

2 3 F = 3 pq + q 

Finally we point out the binomial distribution has two parameters, the 

probability of "success" p and the number of trials n. 

2. The Hypergeometric Distribution 

p(r) = 

F(x) = 

nk 
m = N 

(~} (:=~) 
r = 0, l, ••• ,n, 

(:) 
n - r :s; N-k 

X 

!: p (r) X= O, l, ••. ,n 
r=O 

0
2 = nk(N-k) (N-n) 

N2 (N-1) 
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Inherent in the binomial distribution is the assumption that the n trials 

are made when there is a possibility of infinite trials; for example, we can 

view then coin tossings as a sample from an infinite number of tossings. 

Suppose now that the underlying population is not infinite and the sample 

of n trials is drawn from a population of N possible trials of which k are 

"success", then the probability function p(r) of the hypergeometric distribu-

tion gives the probability of exactly r successes in the sample. 

The word "trial" may be replaced by the word "unit" and then p(r) gives 

the probability of exactly r "good" units in a sample of n units drawn from a 

lot of N units of which k are "good". 

The hypergeometric distribution has three parameters, N, n and k. When 

n < < N (so that the drawn sample can be considered as drawn from an infinite 

k lot), it approaches the binomial distribution with parameters nand p = N. 

3. The Geometric Distribution 

p (r) = (1-p) r-lp 

X 

F(x) = :E 
r=l 

1 m=-
p 

r-1 (1-p) p 

r = 1, 2, ... , 

Again we deal with Bernoulli trials; p(r) is the probability of exactly 

(r-1) failures preceding the first success (pis the·probability of success 

and it is the only parameter of the distribution). 
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4. The Pascal Distribution 

p(r) 

X 

F(x) = l:; p (r) 
r=O 

m = s (1-p) 
p 

s r p (1-p) 

2 = s (1-p) 
cr 2 

p 

s "" 1, 2, .. ~ 

Once more we deal with Bernoulli trials in which the probability of 

success is p. Then p(r) is the probability of exactly r failures and s 

successes in a total of r + s trials where the last trial is a success. There 

are two parameters of the distribution: p and s. 

Using the equality 

(:r+s-1) r (-s) = (-1) 
r r 

we can rewrite the probability function as 

p(r) • (:}
9

(-l+p)r 

If s is equal to one the Pascal distribution reduces to the geometric 

distribution (with a slight modification: r failures, instead of (r-1), 

precede the first success). 

5. The Poisson Distribution 

p (r) 
-At (A. t) r 

= e ' r. A. > 0 r = 0, 1, ••• 

X 

F(x) = E p(r) X = 0, 1, . • • 
r=O 

m = A.t 
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The Poisson distribution describes phenomena which are of different 

nature from the ones described by the other discrete distributions. We no 

longer need the notion of Bernoulli trials, in fact such a notion is not 

meaningful when we talk about events like radioactive disintegration, number 

of persons arriving randomly at a bus-stop etc. Assuming that the rate of 

occurrence of the events is a constant A we interpret p(r) as the probability 

that exactly r events ~ill take place in the interval t. 

The model can also be used when we deal with random events in the plane 

or space as long as the density A of the points is a constant (for example 

A may be the number of flows per unit volume of a material). 

The term 

-At p (0) = e 

is of special interest, since it represents the probability of no occurrence 

-At in the interval t, while the probability of at least one event in t is 1 - e • 

-At (The term e can also be viewed upon as a continuous distribution of times t 

and then it is called the exponential distribution; it is very important in 

reliability and it will be examined in detail later). 

Finally we note that the Poisson distribution can be used as an approxi-

mation to the binomial distribution with At = np for n + 00 and p + 0. 

Continuous Distributions 

1. The Normal (Gaussian) Distribution 

f(t) 1 
exp 

/27rcr [
- (t-m)

2J 
2cr2 

-oo < t < oo O<cr<oo 

F(t) 1 =--
~0 

j exp [- ('T-m~ 2J d'T 
-oo 2cr 
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The normal distribution is one of the most widely used. It has two 

parameters: the mean m, which specifies its position on the real axis (loca-

2 
tion parameter) and the variance rr , which determines its spread (scaling 

parameter). The distribution is symmetric (bell-shaped) about the mean 

(Fig, 2.1). 

If we define the new variable 

t-m 
y = (J (standard normal random variable) 

we observe that its distribution is again normal, i.e. 

1 [- L22] f (y) = 
2

1T exp (2.14) 

but now there are no unknown parameters in f(y) (or, equivalently, 

u = 1). This is helpful since we can tabulate the distribution function F(y) 

(ref. 4, 12) and a simple change of variables from y to twill yield values 

of F(t). 

The great applicability of the normal distribution is due to a very general 

central limit theorem, which states that, under very general assumptions, the 

mean of a sample of n independent random variables which follow the same or 

even different distributions with finite mean and variance is normally distrib-

uted for large n. Therefore, if a random variable can be considered as the 

result of many independent causes, none of which dominates, then it is normally 

distributed. This property is used in the study of wear-out of equipments, 

2. The Log-Normal Distribution 

f(t) = 1 exp [- (lnt-o:)
2

] 
J2;-st 2s2 

s > 0 t ::::: 0 
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f (t) 

m-3crm-2cr m-er m m+crm+2crm+3cr t 

Figure 2.1. The Normal Distribution. 

f (t) 

t 

Figure 2.2. The Log-normal Distribution. 
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The random variable T has a log-normal distribution, if its 

logarithm follows a normal distribution. As shown in Fig. 2.2 the distribu-

tion is skewed to the right. It has two parameters: a specifying its scale 

and S specifying its shape. A location parameter can be introduced by sub-

stituting t-y for t in the density function. Then the range of t is t ~ y. 

The log-normal distribution is used as a model of failure and repair. 

The justification for using the log-normal distribution comes from another 

central limit theorem, which states that the product of n independent rando~ 

variables is a log-normally distributed random variable for large n 

3. The Gamma Distribution 

r(r) t e 

f(t) ! 
A r r-1 -At 

= 0, otherwise 

r m=x 

t I Tr-1 e -.:\T dT 

0 

and the gamma function is defined as 

co 

I r-1 -x r(r) = X e dx 
0 

t :::: o, 

which, for r a positive integer, reduces to 

r (r) = (r-1~ I 

r > 0, A > 0 

The gannna distribution is obeyed by random variables which are dE!f:i.ned 

on half the real axis. It has two parameters, A and r, and it can take many 

shapes for various values of the parameters (Fig. 2. 3) • For r S 1 if; is con-

. r-1 
cave upwards while for r > 1 it is concave downwards with a maxitnuni ~t t = -A-. 
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f ( t) 

0 t 
Figure 2.3. Shapes of the Gamma Distribution for the Two Different Ranges of r. 

f ( t) 

t 

Figure 2.4. Extreme Value Distributions 
A. Type I Asymptotic Distribution of Minimum Values. 
B. Type I Asymptotic Distribution of Maximum Values. 
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The physical situations where the gamma distribution is used are when 

events are occurring at a constant rate A and we are interested in the dis-

tribution of the time it takes for r events to occur (this interpretation 

implies that r is a positive integer, while the given definition does not 

require this restriction. A non-integer r could result from experimental 

data, although usually it is rounded off. When r is a positive integer the 

gamma distribution is also called Erlangian). 

As the number r of events increases the distribution becomes more and 

more symmetrical and for large r it can be approximated by a normal distribu-

tion with the same mean and variance. 

Tables of the distribution function F(t) (incomplete gamma function) can 

be found in Ref. 13. 

4. The Chi-square Distribution. 

{ 

1 Jn/2)-1 -t/2 

r(%) 2n/2 e 

f(t) = 
0 , otherwise 

t ~ 0 n positive integer 

m = n 
2 a = 2n 

1 The chi-square is a special case of the gamma distribution for A = 2 and 

r = %• where n is a positive integer. The parameter n is quite arbitrarily 

called "degrees of freedom" and a usual notation is x2(n) meaning that the 

random variable has a chi-square distribution with n degrees of freedom. 

Tables with values of the chi-square distribution can be founf in many 

textbooks on statistics and reliability. 4•9, 12•13 , 14 As an application we 

consider the goodness-of-fit problem, that is, we have experimental data and 

we wish to determine whether these data can be assumed to come from a theo-

retical distribution. The data come as observed frequencies of events and 

for the same events the assumed distribution predicts different, in general, 
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frequencies. A goodness-of-fit test determines whether these differences are 

due to chance or our assumption is wrong. One such test is as follows: from 

the theoretical frequency f~ and the observed frequency f~ of the kth event 

(or category) we find the value 

2 N 
X = L 

k=l 

(f~ - f~) 
2 

fk 
t 

where N is the number of events. The degrees of freedom will be N-1, if no 

parameter used in the test is calculated from the test data (we use N-1 

because the assumption of a distribution, from which the fk are found, results 
t 

to a loss of one degree of freedom), 2 
Having the X value and the degrees of 

freedom we find from tables what is the probability of such a value being due 

to chance and accordingly we accept or reject our assumption about the theo-

retical distribution. For example, suppose we toss a coin 100 times and we 

observe 42 times "heads" and 58 times "tails". We wish to check whether it 

is reasonable to assume that the coin is ideal, that is, whether there is a 

theoretical probability of 1/2 for heads and tails. 

f~ = 42, f~ = 50, f~ = 50, N = 2 and 

2 (58-50)
2 + (42-50)

2 
= 2 56 

X = -->..::....:=-:,5.:;;-0 :::...<.__ 5 o ' ' 

Then we have ft = 58, 
0 

9 The degrees of freedom are n = N - 1 = 1. From tables we see that, the prob-

ability that a value of at least x2 = 2.56 with n = 1 is due to chance, is 

only about 0.12. On this basis we would probably decide that the coin was not 

ideal. 

5. The (Ne~ative) Exponential Distribution 

f(t) = A.e-A.t A. > O, t ::: 0 

F(t) 1-e -At = 
1 02 1 

m=x = 
>..2 
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This is also a special case of the gamma distribution for r = 1, that is 1 

it is the distribution of the time for one event to occur, when the events 

take place at a constant rate A. Changing the words a little we can also 

interpret it as the distribution of the time between successive events, when 

the events occur at a constant rate A. 

6. The Beta Distribution 

r(a)r(S) t 
f(t) = 

(1-t)S-1 a > o, S > o, o ~ t ~ 1 !
r(a+S) a-1 

0 otherwise. 

F(t) 

cr2 = __ ...:;a;:.;;..S __ _ 

(a+S) 2(a+S+l) 

The beta distribution can be used when the random variable takes values 

in an internal. The formulas given above are for the interval [0,1]; if the 

random variable is limited in [t0,t1], we map this interval on [0,1] by the 
t-t 

f 
, I 0 

trans ormat1on t = t and we use the above formulas. 
tl- 0 

The distribution function F(t) (incomplete beta function) has been 

tabulated in Ref. 15. 

7. Extreme Value Distributions 

In this category of distributions the random variable must be carefully 

specified. 

Consider a random variable X, its density ¢(x) and distribution function 

¢(x). We select a sample of n values x
1

, x2, •.• , xn from the domain of X and 

on this sample we identify the maximum (or minimum) value xmax (xmin). It is 

clear that by selecting another sample of n values the maximum (minimum) ele-

ment in it will, in general, be different from that of the first sample. 
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This leads us to define a new random variable X (X . ), which is the largest max m1n 

(smallest) value of X in a sample of size n from an initial distribution ~(x). 

\,le seek the distribution of this new random variable X (X ) 
max min · 

As an example consider the floods from a river. The random variable X 

is the (average) daily discharge of the river. The sample is a year, that is, 

n = 365 days. In this sample we call the largest discharge a flood and it is 

the ne~.,r random variable X 
max Our problem is to find the distribution of 

floods over the years. 

Knowing the initial distribution ~(x) it is easy to calculate the dis-

tribution of maximum values from samples of size n (Ref. lo). Recalling the 

probabilistic meaning of distribution functions we get 

and the density is 

f(x ) = max 

dF(x ) max 
dx max 

n~n-l(x ) ~c ) 
= ~ max ~ xmax · 

Similarly for the minimum values we get 

F(x. ) = 1- [1- ~(x. )Jn m1n m1n 

and 

n-1 
f(x. ) = n [1- ~(xi)] ¢(xi) m1n m n m n 

(2.15) 

(2.16) 

However, more general results can be obtained for large sizes, in which 

case only general properties of the initial distribution are required and not 

its exact form. These asymptotic results are very useful in practice and we 

examine them in detail. 4 ' 16 , 17 

Type I asymptotic distribution of maximum values 

The requirement we impose on the initial distribution ~(x) is that it 

should be of exponential type, that is, it should tend to unity for increasing 
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x at least as rapidly as an exponential. This is a quite general condition 

and several common distributions satisfy it like the gamma (and, naturally, 

the exponential and the chi-square), the normal and the log-normal distribu-

tions. For such initial distributions the maximum values of large samples of 

independent values follow the distribution (we drop the subscripts max and min 

and we use the variable t) 

f(t) = a exp [- a(t - S) - e-a(t-S)J 

for - oo < t < oo - 00 < s < 00 a > 0 

Tables of values of F(t) can be found in Ref. 18. The floods mentioned before 

follow this distribution. 

Type I asymptotic distribution of minimum values 

. ¢(x) 
The requirement here is that the 1nitial distribution should tend to 

zero as x + - 00 at least as fast as an exponential. The normal distribution 

satisfies this condition. The distribution of the minimum values of large 

samples is then 

for - oo < t < oo 

and 
F(t) = 1 - e 

- 00 < s < 00 

a(t-S) -e 

a > o 

16 This distribution is used in series systems where the rule "no chain is 

stronger then its weakest link" applies. For example, if n elements are 

connected in series the system will fail when the least reliable element fails, 

For these distributions we can define the mean and variance as usual. 

Thus the mean for maximum values is ~ + 0 ·~77 and for minimum values S- 0 ·~77 , 

while the variance is the same for both distributions and equal to 
1 · 6 ~5 • 

a 
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The shape of the distributions can be seen in Fig. 2.4 and it is always the 

same, since there is no shape parameter (a is a scaling parameter and S a 

location parameter). 

Notice that the asymptotic results are true for large samples of indepen-

dent values. This may cause some hesitation occasionally, when the values 

are not independent; for example the discharge of a river one day is not 

always independent from the discharge of the previous day. But the samples 

are usually so large that another sample of truly independent values can be 

selected which will still be large enough for the asymptotic results to apply 

(we can select, for instance, 150 independent daily discharges from the 365 

of the year). 

Another useful extreme value distribution is examined in the following 

section. 

B. The Weibull Distribution 

f(t) = 1 % ( t r 1 

exp [- ( t r l 
0 otherwise 

for t ~ 0, a > O, 8 > 0 

F(t) = 1 -

This is also called Type III asymptotic distribution of minimum values. 

The initial distribution should be bounded at the left, like, for example, 

the gamma distribution. Therefore, we use the Weibull distribution for the 

distribution of the minimum values of large samples of independent values, 

when the initial distribution is gamma, while we use the Type I distribution 

of minimum values, when the initial distribution is of exponential type 

(normal). 
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The distribution, as given above, has two parameters, the scaling 

parameter B and the shape parameter a (see also Fig. 2.5). A location param-

eter y can be introduced by substituting t - y for t in the given formulas. 

For a = 1 the Weibull distribution reduces to the exponential distribution. 

9. Student's t Distribution 

In 2.A.5 we discussed the interval estimation of the parameters of a 

distribution. Also we gave formulas for the calculation of the mean x and 

the (unbiased) standard deviation s of a sample. 

Student's distribution is used to find confidence intervals for the mean 

of a normal distribution. The means x from samples of size n are normally 

distributed (central limit theorem) with mean the population mean m and 

(J 
standard deviation~· Very often though cr is not known but estimated from 

- s 
the sample (s), Then the standard deviation of the means xis --_but it is 

Vn 
no longer accurate to assume their distribution to be normal. However, it can 

be proved that the variable 

t = x- m 
s 

Jn 
follm.,rs Student's t-distribution. This can be used to yield bounds for m and 

confidence levels, for example, how certain we are that the true population 

mean m lies in the interval 

X± t ~ 
a, r;;; 

The value of t 
a,r 

. 4 9 12 
can be found from tables of the t distribut~on ' ' once 

the confidence level 1-a and the degrees of freedom r are given, The value 

of r is n-1. Some examples will clarify the procedure. 

Suppose we calculate x and s from a sample of size n = 15. Then r = 14 

and for a confidence level of 0.95 = 1 - a, that is a= 0.05, we find from 
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f (t) 

t 

Figure 2.5. Shapes of the Weibull Distribution for the Two Different Ranges of 0:'. 
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tables that t 0 •05 , 14 = 2.145. Then we say that if we take many samples and 

we calculate their mean, then 95% of the time the mean will fall in the inter-

val. 

i± 
s 

2.145 r.:: 
Vl5 

Instead of using so many words we simply say that the population mean lies in 

the above interval at a. confidence level of 95%. 

When we specify an interval for the mean we call the confidence level a 

two-sided confidence level. One-sided confidence levels can be found from 

similar table of t values and they will be of the form 
a,r 

t 8 lower bound X -
a,r;-;:-

and x+ t 8 upper bound. 
a,r;-;;_ 

In the above example we find that the value of t 0 . 05 , 14 for one-sided 

level is 1.761 and we claim that 95% of the time the sample mean will be 

- s - s 
greater than x - 1. 761 r::: or srnaller than x + 1. 761 r:-:' 

v15 v15 
The t-distribution is also used to test hypotheses related to means as 

we will see in the following section. 

2.A.7 Tests of Hypotheses 

We have already encountered the two principal areas of statistical 

inference. In the point and interval estimation of parameters we described 

methods for estimating the parameters of distribut~vns from information con-

tained in samples. In the discussion of ohi-square distribution the problem 

was of a different kind; we assumed a theoretical distribution and we performed 

a test to check whether it was reasonable to accept that the sample data carne 

from that distribution. This problem falls in the category of statistical 

hypotheses. 
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Another example of a hypothesis could involve assumptions about the 

parameters of a known distribution. For example, a change in the production 

process of a certain equipment is expected to increase the mean m of a cer-

tain characteristic while the variance remains unaltered (assume normal dis-

tribution). Then we form two hypotheses: 

H0 : m ~ m
0

, the so-called null hypothesis expressing the possibility of no 

improvement, and 

H1: m > m0 , the alternative hypothesis. 

Of course we will need a test which will enable us to accept or reject H
0

. 

Thus we have the two definitions: 12 An assertion about the distribution of 

one or more random variables is called a statistical hypothesis. The 

acceptance or rejection of a hypothesis from information contained in a sample 

is based on certain rules which are called a statistical test. 

From the above it is clear that there is a possibility that we may reject 

H0 while actually it is true; this is called a type 1 error or the producer's 

risk. The reason for the last name is that when we test a lot of equipments 

for their quality, the null hypothesis H0 is that the lot is "good", so by 

rejecting it the producer loses. 

The other kind of error we can make is to accept H
0 

while actually it is 

not true; this is the type 2 error or the consumer's risk, the last name being 

justified by arguments similar to those in the previous paragraph. 

It is customary to give percentages for these errors. We say that the 

producer's risk is lOOa per cent and the consumer's risk is 1006 per cent and 

we mean that lOOa per cent of the time we will reject H0 , while it is true, 

and lOOS per cent of the time we will accept H0 , while it is wrong. By taking 

large samples we can be more confident about our judgement and thus reduce 

a and S. 
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A few examples will give a better picture of these concepts, For more 

complete discussions of the mathematical aspects of statistical hypotheses 

the reader is referred to Ref. 12; useful applications can be found in 

References 6 and 9. 

Suppose we have a lot of N equipments of which S are "good", The number 

S is unknown and we take a sample of n equipments to decide whether we will 

accept the lot or not. In Ref. 6 (Tables 13.2 through 13.4) the hypergeometric 

distribution is used to produce tables which, for a lot of size N, sample size 

n and the hypothesis that the lot will be accepted if c or less equipments 

are found defective in the sample, give the percentages in the lots which will 

be accepted (1-a)lOO per cent of the time and 100~ per cent of the time. The 

producer's risk is set at a= 0.05 and the consumer's risk at ~ = 0.10. Thus 

for a lot of N = 60 equipments and a sample size n = 10 we. decide to accept 

the lot if the number of defectives in the sample is less than or equal to 

c = 1. Table 13.3, then says that the producer has the risk to have the lot 

rejected 5 per cent of the time when it has 4.2% defectives. On the other 

hand the consumer has the risk of accepting the lot 10 per cent of the time 

with 32% defective items in it. 

Another example involves the mean of a normal distribution. At a certain 

time we have reason to believe that the mean m has changed from its known 

value m0, while the variance is the same but unknown. We take a sample of 2 
l:xi 2 l:(x-x) 

size n and we calculate the mean x = --- and the unbiased variancb s = n n-1 

The null hypothesis is: 

H0 : m = m0 (the mean has not changed) 

and the alternative hypothesis is: 

H1 : m ~ m. (the mean has changed). 

We seek a test to decide whether to accept H and we are willing to be in 
0 
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error rejecting it (while it is correct) 5 per cent of the time (that is 

a= 0.05). We do not specify the type 2 error. We know that the variable 

x-m 
t = ___Q_ 

s 

F 
follows Student's t-distribution with n-1 degrees of freedom. From tables we 

find the value t 1 (two-sided) and this represents the maximum allowable a,n-

value of (t) which can be due to chance at a confidence level of (1-a)lOO per 

cent. Thus the hypothesis H0 is rejected if (t) > t • 
a,n-1 

Other types of hypotheses and their handling will be found in later 

chapters. 
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2.B. THE FAILURE OF COMPONENTS 

2.B.l Introduction 

It is a well-known fact that all devices or systems undergo failures of 

some kind due to various reasons, like manufacturing defects, very high stres­

ses, unfavorable environmental conditions, degradation of strength due to 

aging, etc. 

Of great importance in reliabili~ and safety studies is the time-to­

failure of a unit, that is the time it takes for a unit which is as good as 

new to fail (for repairable items the time between two successive failures is 

of interest, but we do not consider repair here). To predict the exact time 

of failure is a rather impossible task considering the many causes that can 

lead to it and the vast amount of information we would need. However a mathe-

matical theory of failure can be developed with models which approximate the 

real situation. Of course, it comes as no surprise that such models are prob-

abilistic in nature and rely heavily on Probability Theory and Statistics. 

The above comments are very vague for quantitative analysis. To be pre­

cise we proceed to several definitions. When we talk about "units", or "ele-

ments", or "devices", or "components", we agree to view them a~ single enti-

ties and we completely ignore the fact that perhaps a particular unit consists 

of other parts, Every such component has been manufactured to perform a cer­

tain function; if, for any reason, the unit is not able to perform this 

specific function under its prespecified operational conditions, w~ will say 

that a failure has occurred. 

To express the probability of failure as a function of time extensive use 

of distribution functions will be made. (see 2.A.3) The distribution F(t) 

gives the probability that the unit will fail before t, while the density func­

tion f(t) = d~~t) is helpful to define the probability that the device will 
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fail between t and t + 6t, which is f(t)6t. The quantity R(t) = 1-F(t) is 

called the reliability of the item and it is the probability that the item 

will fail after time t. 

Given a distribution function F(t) we define the hazard function (or 

hazard rate, or failure rate) as 

h(t) = f(t) 
1-F(t) 

and we interpret it as follows: if the unit survives up to t, then the (con-

ditional) probability that it will fail in (t, t + 6t) is h(t)6t. 

The failure rate is very useful in helping to understand the physical 

phenomenon which the distribution function describes. A typical graph is 

shown in Fig. 2.6 (bathtub curve). In the burn-in period the hazard rate 

decreases due to the early failures of the units with manufacturing defects. 

This period is not of interest, because special "debugging" procedures are 

usually used to eliminate these defective elements (which, strictly speaking, 

do not belong to the population, since their manufacturing process deviated 

grossly from the design which would guarantee capability of performing the 

specified function). 

The next t\vo regions represent the two important phenomena that we will 

attempt to model. In the first one the failure rate is constant meaning that 

the probability of failure is independent of the items age. Failures are due 

to very high stresses due to chance (e.g. an accidental current surge which 

causes failure of a light bulb). In the next region the probability of failure 

increases with the item's age (after several thousand hours of operation the 

probability that the bulb will fail increases with time until, eventually, the 

bulb burns out). The failure is now due to wear, which is a generic term for 

the accumulating irreversible changes which weaken the strength of the equip-

ment. 
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Figure 2.6. Typical Failure Rate as a Function of Time. 
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These two types of failure are examined in detail in the subsequent 

sections. Statistical distributions are presented with their mathematical 

properties and their applications as models of failure and other areas of 

safety.analysis. Then the general problem of analyzing sample data is consid-

ered with the associated statistical methods for determining the parameters 

of distributions. 

Finally, we point out that we do not always talk about times-to-failure 

or times of successful operation. Time may not be the appropriate variable 

in cases of some units like switches or rotating devices and then we resort 

to such variables as cycles of operation, number of revolutions etc, Never-

theless, nothing essential changes and only slight modifications are needed 

in order to adjust the models to a particular situation, 

2.B.2 Statistical Distributions 

We present here the statistical distributions used to describe the life-

time of components, their properties and the physical situations which lead 

to them. A very detailed account is given in the book of Gertsbakh and 

Kordonskiy (Ref. 19); additional discussions can be found in many books on 

reliability, 4 ' 5 ' 6 ' 7' 8' 9 and in Ref. 20 and 21. Some mathematical properties 

of discrete and continuous distributions were presented in Section 2.A.6 of 

this report. 

1. The Exponential 

f(t) = 

F(t) = 

h(t) = 

1 m=x 

A. e-At 

1 
-A.t 

- e 

A. 

Distribution 

A. > 0 

R(t) -At = e 

1 ;z 
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The exponential distribution is the most widely used in reliability 

studies. What makes it distinctly different from the other distributions is 

the constancy of the hazard function, which qualifies it as the only distribu-

tion to describe the period of "chance failures" of an item. 

Figure 2.7 helps to clarify the physical process that is modeled. The 

maximum stress that the item can withstand is S and it is constant with max 

time. The actual stress applied is random in time and it is represented by 

the zig-zag curve. Clearly a failure occurs when the applied stress exceeds 

the maximum allowable stress. Such "peak" stresses (that is, greater than 

S ) are assumed to follow the Poisson distribution. max 

-At (At) r 
p(r) = e r! A > 0 r = 0, 1, .•. 

where A is the constant rate of occurrence of peak loads and p(r) is the prob-

ability of exactly r peak loads occurring in an interval (O,t). For this 

assumption to be valid the applied stress must have the following two proper­

ties19 

i) asymptotic independence: the peak stresses are rare events, thus the 

time interval between any two of them is big enough, so that they can be con-

sidered as independent events. 

ii) stationarity: this means that the stresses are homogeneously applied 

without a preferred direction (they do not gradually increase or decrease). 

With the assumption of Poisson distributed peak stresses we can readily 

see that the component will not fail in the interval (O,t) if no peak stresses 

occur in that interval, therefore its reliability is 

R(t) = p(O) = e-At 

and its unreliability (failure distribution) 

-At F(t) = 1 - R(t) = 1 - e 
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Figure 2.7. Stress as a Function of Time. 
Failure occurs at time T due to a "peak" 
stress exceeding the maximum strength of 
the component smax· 
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The exponential distribution has been found particularly useful in the 

description of times-to-failure of electronic devices (electron tubes, etc.). 

In most reliability applications the failure rate is very small (less than 

10-4 hr-1) and for not very large times t the exponential distribution can be 

approximated by 

-At F(t) = 1- e "'At. 

It is interesting to see to what results the previous line of thought 

leads, when time is not the appropriate variable (e.g. we may be interested 

in the number of landings it \vill take for an airplane until a rough one occurs 

19 which leads to failure of some of its equipments, or the number of startings 

of a Diesel engine until it fails, etc.) 

In this case A is not the mean rate of occurrence of peak stresses but 

the probability of the unfavorable event (rough landing, engine doesnot start). 

In lieu of the Poisson distribution we use the geometric distribution 

r-1 p (r) = (1-A) A o s: A s: 1, r = 1, 2, ... 

which gives the probability of (r-1) favorable events before the unfavorable 

event occurs. The cumulative distribution function F(k) gives the probability 

h t f '1 · the 1st or 2nd kth t t a a a1 ure occurs 1n or ••• even 

F(k) 
k 

== ];_ p(r) = 1 - (1-A)k 

and the probability that in at most k events none "'Lll be unfavorable (i.e. 

the reliability) is 

k 
R(k) = (1-A) 

This is the probability that, for instance, either the (k+l)th, or the 

(k+2)th •.. landing is rough, or in other words, that at least k landings are 

"good". For A small and k big we can approximate 
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k -kA 
R(k) = (1-A) ~ e 

and the exponential distribution reappears, but with different units for A 

confirming the comments made in the introduction. 

or 

or 

2. The Gamma Distribution 

rr r-1 -At " :(r) t e t 

f(t) 
, otherwise 

t 

F(t) 
Ar I Tr-1 -h 

dT = r (r) e 
0 

F(t) 
r-1 (At)k -At = 1 - :E- e 
k=O k! 

h(t) [[ 1+1. ( r-1 -h 
= 

h(t) = 

r m=r 

t e 

Ar tr-1 

r-1 (At) k 
(r-1)1 1:-

k=O k! 

()2 = 

;::: 0, r > 0, A > 0 

for r = 1, 2, ••• 

dT r 
for r = 1, 2' ... 

The gamma distribution appears to be particularly suited for the study of 

failures, since the random variable is restricted on the positive real axis. 

The exponential distribution is a special case of the gamma for r = 1. The 

physical interpretation of the distribution is a natural extension of that 

for the exponential, i.e. the peak stresses are again Poisson distributed but 

now it takes r shocks for the failure to occur (this interpretation implies 

that r is a positive integer, while the given definition does not require this 

restriction. A non-integer r could result from experimental data, although 

usually it is rounded off. When r is a positive integer the distribution is 

also called Erlangian). 
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It follows from the above that the time~to-failure depends on how many 

shocks the device has suffered, that is, it depends on its age. Therefore 

the distribution is used in the wearout period of the components. The hazard 

function increases with time for r > 1 and it approaches A for large values 

oft (Fig. 2.8). The density function is concave upwards for r ~ 1 and concave 

r-1 downwards for r > 1 with a maximum at t =--A- (Fig. 2.3). 

The gamma distribution has two parameters: the scale parameter A and the 

shape parameter r. A third parameter y can be introduced by replacing t with 

t-y and the distribution holds for t > y. This is called threshold of sensitiv-

ity or guarantee time, since, before y, no damage occurs according to the model, 

Such a parameter can be introduced in all statistical models of failure which 

are bounded on the left. 

3. The Normal Distribution 

1 f(t) = ~;;__ 
Ji;r (j 

F(t) = ~ 
2'1T (j 

exp 

/ 
-oo 

1 where N(t) = --
Ji;r 

[
- (t-m) 

2
] 

2r:J2 

exp 

l exp 

The normal distribution is used as an approximdtion to the garwa for 

larger (approximately for r > 12). The physical assumptions remain the same. 

At first it seems peculiar that a distribution the random variable of 

which is allowed to be negative may be useful in life studies. However, the 

normal distribution here approximates the gamma and, as such, the probability 

of negative times is negligibly small, that is, only the left tail of the 
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Figure 2.8. Hazard Function for the Gamma Distribution. 
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distribution covers the negative axis. Of course, the normal distribution 

can also be used for any random variable, which is result of many independent 

causes (central limit theorem). 

r 2 r The mean and variance of the distribution are m = I and cr = -z· The 
A 

hazard function is shown in Fig. 2.9; it is an increasing function of time 

and unbounded to the right. 

4. The Log-Normal Distribution 

f(t) = 
/i.Tr St [ 

(lnt-a) 
2
] exp -

2(32 

(3 > 0 t ~ 0 

The random variable t has a log-normal distribution, if its logarithm 

follows a normal distribution. The distribution is skewed to the right (Fig. 

2.2) and it has two parameters: a specifying its scale and (3 specifying its 

shape. The hazard rate (Fig. 2.10) initially increases and for large times it 

tends to zero. 

The usefulness of the log-normal distribution comes from a central limit 

theorem, which states that the product of n independent random variables is 

a log-normally distributed random variable for large n. Such a case arises 

in the study of failures from fatigue cracks. 

magnitude of the crack at successive times. 

The random variable is the 

At each time t. the magnitude 
~ 

Xi is assumed to be proportional to the previous magnitude Xi-l' i.e., 

where the qi's are random variables (independent and not necessarily with the 

same distribution). Then, according to the above-mentioned central limit theo-

rem, the random variable X. is log-normally distributed for large i. 
~ 

In this 
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Figure 2.9. Hazard Function of a Normal Distribution. 
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h(t) 

0 t 

Figure 2.10. Hazard Function of a Log-normal Distribution. 
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respect, tne lognormal distribution can be used to estimate the degree of 

deterioration of the object. Applications in life studies will be considered 

in subsequent sections. 

5. The Weibull Distribution 

= {~ (trl exp [ -(tfj t 2: 0 a> 0 

f(t) t3 > 0 

0 , otherwise 

F(t) = 1 e 
-(t/S)a 

a 
h(t) = 13 

m=sr(-~+ 

The shape of the distribution can be seen in Fig. 2.5. It has two 

parameters: the shape parameter a and tne scaling parameter f3, Its hazard 

function 1s an 1ncreas1ng function of time for a > 1 and a decreasing function 

for a< 1 (Fig, 2.11). For a= 1 the Weibull becomes the exponent~al dis-

tribution with constant failure rate. 

The physical interpretation of the Weibull distribution is associated 

with the theory of extreme values. It is the distribution of the minimum 

value of large samples of independent values from a gamma distribution. Such 

a situation is encountered in devices which consist of many other components, 

the lifetime of which is given by the same gamma distribution; the device fails 

when any of its components fail, therefore its l1fet1.me is a random variable 

which is the minimum of the lifetimes of the components. It has been found 

that the gamma distr1butions of the component lifetimes may be allowed to have 

slightly different parameters and still the Weibull distribution is applicable. 
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Figure 2.11. Hazard Function of the Weibull Distribution for 
Various Ranges of the Shape Parameter~. 
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The Weibull distribution is also called Type III asymptotic distribution 

of minimum values for obvious reasons. It has been used successfully to 

22 23 describe the time-to-failure of electron tubes, ball-bearings, et al. 

6. Extreme Value Distributions 

Type I Asymptotic Distribution of Maximum Values 

f(t) =a exp [- a(t-S) - e-a(t-8)] 

F(t) = exp [-e-a(t-8)] 

-a( t-8) ae 
h(t) = [ -a(t-8)] exp e -1 

m = 8+0.577 
a 

a > 0 

Type I Asymptotic Distribution of Minimum Values 

f(t) = a exp [ a(t-8) - ea(t-8)] 

a(t-8) 
F(t) = 1 - e -e 

h(t) = a ea(t-8) 

m = 8 _ 0.577 
a 

(J2 = 1. 645 
2 

a 

a> 0 

Extreme value distributions deal with the distribution of tae maximum or 

minimum value in large samples of independent values drawn from an initial dis­

tribution.4•16,17 

Consider a sample of size n of values x1 , x2, ••• xn from a distribution 

function ~(x). We define a new random variable T =min (x
1

, x
2

, ••• ,xn) and we 

seek the distribution of T for all possible samples of size n. Knowing ~(x) 

it is readily seen that 
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F(t) = P(T ~ t) = 1- [1- ~(t)]n ( 2 .16) 

and the density function is 

f(t) = ~~t) = n [1 - ~(t) ]n-l ¢(t) • 

If T is defined as the maximum value of the sample, its distribution will 

be 

F(t) = ~n(t) (2.15) 

and f(t) = n ~n-l(t) ¢(t). 

This approach requires knowledge of the initial distribution ~(t) and of 

the sample size n. The usefulness of the asymptotic distributions lies in the 

fact that such detailed knowledge is not required; the samples should be large 

and the initial distribution should satisfy certain general requirements. 

If the initial distribution ~(x) tends to unity as x + oo at least as fast 

as an exponential, the maximum values of large samples of independent values 

follow the Type I asymptotic distribution of maximum values. Common distribu-

tion which satisfy this requirement are the gamma (and, naturally, the exponen-

tial and chi-square), the normal and the log-normal. 

The Type I asymptotic distribution of minimum values is applicable when 

the initial distribution is the normal (we have seen that when the initial 

distribution is the gamma then the minimum values of large samples of indepen-

dent values follow the Weibull distribution). 

One of the most well known applications of extreme value distributions 

16 17 is in the study of floods from a river. ' The initial variate X is the 

average daily discharge of the river and its distribution is of exponential 

type (that is, ~(x) + 1 for x + oo at least as fast as an exponential). The 

sample size is one year (n = 365 days); the maximum discharge in one year is 

called a flood and the distribution of floods is the Type I asymptotic 
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distribution of maximum values. We have required that the values of the sample 

be independent and the discharge of the river in one day is not completely 

independent from the discharge of the previous day; however, another large 

sample of truly independent discharges can be selected (for example, we may 

consider only 150 independent daily discharges in lien of 365). 

An interesting application of the theory of extreme values is in the 

16 17 24 study of strength of materials. ' ' It has been found that the experi-

mental strength is much smaller from the theoretical value derived from atomic 

considerations. This is attributed to the existence of flows in the material 

which initiate cracks that reduce its strength. The assumption is that there 

is a large number of such defects which are independent and they are randomly 

distributed in the material. We divide the material into a large number of 

volume elements and in each volume element, there is only one crack. The size 

of the crack is a random variable with a distribution of the exponential type 

(for example, exponential). The strength of the material in each elementary 

volume is decreased from the theoretical value by a quantity which is directly 

proportional to the crack size> i.e. si = s 0 - cxi' where si the actual strength, 

s0 the theoretical strength, c a proportionality constant and xi the crack size. 

Therefore the strength of the material is a random variable; the breaking 

strength is the minimum of si and it corresponds to the maximum crack size xi. 

But the maximum crack size has the Type I asymptotic distribution of maximum 

values and a simple change of variables reveals that the breaking strength 

follows the Type I asymptotic distribution of minimum values. 

This example involved the distribution of the material strength; another 

example regarding times-to-failure concerns the failure of surfaces due to 

21 25 chemical corrosion. ' Initially the surface has a large nt.nn.ber of pits with 

random depths distributed according to the exponential distribution. Chemical 
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corrosion causes the depth of each pit to increase until failure occurs due to 

penetration of the surface. Assuming that the time of penetration is given by 

ti = c(H-hi), where cis a constant, H the surface thickness and hi the initial 

depth of the ith pit, it is clear that the time-to-failure is equal to the 

minimum of (t1, ••• ,tn)' which, of course, corresponds to the maximum of 

(h
1

, ... ,hn). Just as before we find that the maximum initial depth follows 

the asymptotic distribution of maximum values and, by changing variables, the 

time-to-failure obeys the asymptotic distribution of minimum values. 

Fig. 2.6 shows the asymptotic distributions and Fig. 2.12 shows the hazard 

functions of the extreme value distributions. 

The extreme value distributions as presented above give the probability 

of the sizes of the maximum (minimum) value of large samples. Thus the asymp-

totic distribution of maximum values. 

F(x) = exp [- e -a(x-~)J 

when applied to the study of floods enables one to state that the probability 

that the flood in any year is less than or equal to xis F(x). 

However there are two other questions which remain unanswered, namely 

1. How often does a flood of a certain size or greater occur? 

2. What is the distribution of the floods in a period of m years? 

To answer the first question the notion of the return period is introduced. 

For a given distribution function F(x) (not necessarily of the extreme value 

type) the quantity 1-F(x) is the probability that the random variable will take 

on a value at least x. Then the quantity 

1 T ( x) = -....::;;....,....-,_. 
1-F(x) (2 .17) 

is called the return period and it is the average number of observations in 

which the random variable exceeds x once. For example, .in the familiar 
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Figure 2.12. Hazard Functions of the Extreme Value Distributions. 
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experiment with an ideal die the probability of the outcome exceeding 4 is 

1 l-F(4) = 3 . Then T(4) = 3 and on the average the number showing on the die 

will be greater than 4 once every three trials, as it is intuitively clear. 

When F(x) is the extreme value distribution and the maximum value of a 

number of observations in a year is the random variable, then the return period 

is the average number of years in which one observation of size greater than x 

will be made. 

Restricting our attention upon the distribution of maximum values which 

is most useful in applications (floods, earthquakes), it can be shown that 

asymptotically the return period converges to 

T(x) = ea(x-S) (2 .18) 

A~ 1 id th h k i i i 26,38,39,40 ~ an examp e, cons er e eart qua es occurr ng n a reg on. 

The maximum annual magnitude has been found in many cases to be distributed 

according to the distribution for maximum values. In the notation common 

among earthquake engineers, it is written as 

F(x) = 
-Sx -ae e (2.19) 

thus the most probable value is l~a and in our notation we can rewrite 

F(x) = 
( 

lna) -e -s x- B-
e 

The return period is given by Eq. (2.17) and for large magnitudes by 

(using Eq. (2.18)) 

T(x) = ! eSx (years) 
a 

(2. 20) 

which means that it takes an average of T(x) years to observe an annual largest 

earthquake of magnitude at least x. 

In a number N of annual largest earthquakes the number of the ones with 

magnitude at least x is 
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N 
N(x) = N[l-F(x)] = T(x) 

or, for large x, using Eq. (2.20), 

-Sx N(x) = Na e 

Taking the logarithms of (2.22) we get 

lnN(x) = ln(Na) - Sx 

41 This equation has the same form as Richter's equation 

(2. 21) 

(2.22) 

(2. 23) 

log N(x) = a-bx · (2.24) 

but the interpretation of the terms is different. In Eq. (2.23) N(x) is the 

number of annual largest earthquakes, while in (2.24) N(x) is the number of 

earthquakes with magnitude at least x which occurred in a given time interval. 

Details of the derivation of Eq. (2.24) may be found in the listed references. 

Consider now the second question: the distriBution of the maximum ele-

ments in a period of m years (for a nuclear reactor the distr~bution of floods 

and of large earthquakes in its lifetime is important; here m = 40 years) 

This problem is again of extreme value type; we wish to find the distribu-

tion of the largest element of samples of size m, where the initial distriou-

tion is the asymptotic distribution of maximum values F(x). Using the method 

presented in the beginning of this section (Eq. (2.15)) we find 

m 
F (y) = F (y) = exp m 

(-me -a(y-S)) = 

= exp (-.-+-a-~) 
which is again the asymptotic distribution of maximum values 

Fm(y) = exp (-e-a(y-S')) 

with si = s + lnm 
a 

Therefore, in a period of m y~ars the maximum flood will have a mean 

S + 0 •577 + lnm and the most probable value will be a 
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S' = S + lnm 
a 

A confidence interval for the return period can also be given. Gumbel 

calculates16 that there is a probability ~ = 0,68 that the period will be in 

the interval 0.32T(x) and 3.13T(x). Therefore, if the return period of an 

earthquake of magnitude at least, say, 8 is 100 years, there is a probability 

0.68 that such a big earthquake will occur in as short a period as 32 years 

or as long a period as 313 years. 

Finally we notice that if in the distribution of minimum values we make 

the transformations t = lnt' and S = lnS' we get 

F(t') = 1- e-(t'/S')a' that is, the Weibull distribution 

Hence, the natural logarithm of a random variable which is Weibull distributed 

follows the extreme value distribution of minimum values (we have seen the 

same relation between the normal and log-normal distributions), This property 

is used when the problem of estimation of parameters is considered, 

7. Superposition of Distributions 

There are many situations where the need to combine different distribu-

19 21 22 tions arises. ' ' In general we can distinguish two cases: 1) more than 

one independent causes of failure are present, 2) the population under study 

consists of several subpopulations of different characteristics. 

When the equipments are under the parallel action of n independent causes 

with distributions F
1
(t), ••• , Fn(t), the distribution of the lifetime is given 

by 

n 
F(t) = 1- J1r (1-Fi (t)), (2.25) 

i=l 

A simple example of such a case is the period of wearout of the items. The 

wearout may be modeled by an appropriate distribution (e.g. gamma, normal, 
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Weibull). Clearly the possibility of a failure due to chance (high stress) 

can not be ruled out therefore a superposition of the exponential distribution 

and the wearout model is necessary. For example, assume that the wearout dis-

tribution is the normal with parameters m and cr, i.e. 

1 
t 2 

[ exp (- T) dy • where N(t) = --
jiTI 

For the exponential we have 

-At 
F (t) = 1 - e 

2 

Then the superposition of the two distributions leads to 

-At [ (t-m)] F(t) = 1 - e 1 - N -a-
with density 

f(t)- e-At{ 1 

,fiTr cr 
exp [- (t-m) 2] + 

2cr2 

Fig. 2.13 shows a plot of this density. 

(2.26) 

The second category of problems where superposition is necessary concerns 

heterogeneous populations. The population may consist of groups of components 

which have different characteristics due to various reasons. 

As a first example ~.;re consider two groups of items; failures are due to 

chance, but the one group (proportion lOOp per cent of the whole population) 

is weaker than the other (100(1-p) per cent). This situation naturally suggests 

the use of two exponential distributions with different failure rates Al and 

A2 (A
1 

> A
2

, Al the failure rate of the weak group). Then the distribution 

function of the population is 

F(t) ( 
-A t) . ( -A t ) 

= p 1-e 1 + (1-p) 1-e 2 
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Figure 2.13. Probability Density Function of the Superposition of an 
Exponential and a Normal Distribution for Two Values 
of the Failure Rate of the Exponential. 
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with density 

In the second example the one group consists of components in the chance-

failure period (exponential distribution) and the other group consists of aging 

items (gamma, Weibull et al). Assuming the gamma model for the aging compo-

nents, we have 

with density 

-A t Ar tr-l 
) "'1 +( ) 2 f(t = pAl "' 1-p ...,.(r ...... _-1...,..)-! 

(r has been assumed an integer). 

e 
-A t 2 

The density and the failure rate are shown in Figs. 2.14 and 2.15. 

In the general case of n groups with failure distributions F
1

(t) ••• Fn(t), 

the distribution for the population is 

F(t) = t pi Fi (t) 
i=l 

th where 100 pi is the percentage of the i group in the population (and 
n 

naturally l:. pi=l). 
i=l 

2.B.3 General Discussion of the Distributions 

(2.27) 

The distributions presented in the previous section are naturally idealiza-

tions of real situations. The failure of equipments is a very complicated 

phenomenon which can only be approximated under various assumptions by 

statistical distributions. Even experimental data do not always reveal the 

appropriate applicable model, because they are usually scattered in the region 

of central tendency of the distributions and, with the freedom provided by the 
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Figure 2.14. Probability Density Function of the Mixing of an 
Exponential With a Gamma Distribution. 
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Figure 2.15. Nonmonotonic Hazard Function Resulting from 
Mixing an Exponential With a Gamma Distribution. 
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parameters of the distributions, several of them can be fitted to represent 

the data. In addition, the number of data points is not very large to ensure 

effective use of goodness-of-fit tests. Therefore, it is essential, before 

a distribution is selected, to understand the physics of failure and the 

various effects that influence it. 

There are three quantities which govern the process of failure: 1) the 

initial strength 2) the loss of strength and 3) the limiting or reference 

strength. We describe briefly the nature of each of these quantities. 

Initial Strength 

The term strength is used in a general sense, It may be the mechanical 

strength of an object (its resistance to tension, for example), the electrical 

strength (e.g, maximum voltage that a capacitor can withstand) or any quantity 

which determines the successful operation of the device (for example, the 

steepness of the characteristic- milliamperes/volt- of a lamp). 

The initial strength is the value of the strength when the object is 

as good as new (t = 0). For a specific component it may be possibl~ through 

some nondestructive test to assign a specific value to S • However, in the 
0 

majority of cases the component is selected from a population of similar com-

ponents, which makes S a random variable. The appropriate distribution is 
0 

determined as follows. 27 , 28 A real object contains a large number of defects 

(flows, impurities) which cause departure from the perfect atomic structure 

of the material of the object. The object is visualized as consisting of a 

large number of volume elements each one having one defect. Depending on the 

size of the defect each element (link) has a certain strength. If the weak 

links receive support from the adjacent links (for example, strength of steel 

under tension) then the central limit theorem can justify the use of a normal 

distribution for S • Under special conditions (e.g. carefully controlled 
0 
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manufacturing) the standard deviation of the normal distribution can become 

very small and it can be assumed that the initial strength is constant. When 

the links do not support each other the weakest link will fail first and 

naturally the distribution used is the Type I asymptotic distribution of 

minimum values or the Weibull (and its special case, the Raleigh, for a=2; 

see Ref. 8 for an application). 

Finally, we must allow for the possibility of an unusually large flow 

due to bad manufacturing (faulty weld, etc.). Then the size of the flow is 

the determining factor of the initial strength. The uniform distribution may 

be used for S on the basis that, since the flow is due to error, any size is 
0 

equally likely. 27 If it is established that large size flows are more unlikely 

than small size ones an appropriate skewed distribution should be chosen (e.g. 

the exponential). 

The Loss of Strength L 

The loss of strength is a very complicated function of the environmental 

conditions and the applied stress. The stress, in turn, is a stochastic func-

tion of time which can exhibit various patterns of variation (stress is, again 

a generic term which may represent mechanical, electrical, thermal, and other 

stresses). 

If the stress is constant in time (static stress) it may usually be well 

represented by a normal distribution (justified by the central limit theorem 

th 28,29) eorem • 

The more general case is when the stress is an arbitrary function of time. 

Then this stochastic function can be described by the two probability densities 

~(s) and ~(t;s) where 

~(s)ds: probability that the stress amplitude falls between s and s+ds 

~(t;s)dt: probability that a stress of amplitude in the interval (s, s+ds) 

occurs in (t,t+dt). 
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A realization of the stress is shown in Fig, 2.16. Usually, the damage 

to the object occurs if the stress exceeds a limit s
1 

(see Fig, 2,16), These 

peak stresses are assumed to follow a Poisson distribution with parameter 

depending on s
1

, i.e. 

r 
(A(sl)t) -At 

p(r) = r! e 

is the probability of r peak stresses in an internal of length t. 

The effect of these loads to the loss of strength is studied by examining 

the behavior of the rate of change of L (Ref. 19, 30), i.e. 

dL(t) = v( t) 
dt ( 2. 28) 

v(t) is again a stochastic function of time. Of course, such a detailed 

calculation of the stress and the rate of wear is impossible in practice. 

However, from general knowledge of the kind of stresses applied on the object, 

we can estimate the form of the time dependence of the rate of wear and this, 

hopefully, will eventually lead to the appropriate distribution for the life-

time, To this end, we write the rate of wear as a product of two functions, 

i.e, 

v(t) = v(t) p(t) (2.29) 

where v(t) is the mean rate of wear and p(t) a stationary function of time with 

constant mean and variance. Clearly, it is the mean rate of wear v(t), which 

determines the mean (permanent) loss of strength, i.e. 

L(t) - I V(t)dt. (2.30) 

In Fig. 2.17 the mean rate of wear is constant. The mean loss of strength 

is 

L( t) = vt (2.31) 
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Figure 2.16. Realization of Stress as a Function of Time. 
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Figure 2.17. Loss of Strength When the Mean Rate of 
Wear is Constant. 
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and the actual loss of strength exhibits random variations about its mean 

value. This situation approximates the .case where the stress is irregular 

and each peak stress as defined previously causes a certain amount of injury 

on the object (cumulative damage). The number of such injuries in a certain 

period of time is given by the gamma distribution. 

In certain processes the mean rate of wear decreases with time (corrosion, 

creep of metals and general processes where the damage is caused by diffusion). 

19 Then the mean rate of wear is approximated as 

- a 
v(t) = b+t (2.32} 

leading to a logarithmic increase of Lwith time. 

Reference Strength 

The reference strength is defined as the limiting allowable value of the 

strength. Due to the continuous loss of strength the initial strength of the 

object changes continuously and when it gets beyond SR failure occurs. 

The reference strength is usually constant although it may change with 

time when the conditions of the use of the component change appreciably. 

Having defined the three quantities governing the failure we can now 

state that the lifetime of the object is the solution of the equation 

S - L(t) = S o R (2.33) 

Recalling the fact that S is a random variable and L(t) a stochastic 
0 

function, it is clear that there is little hope of solving the equation 

exactly. However by assuming specific patterns of variation for the variables 

we can make useful pre4ictions regarding the distribution of lifetime. 

1. Constant Initial Strength and Constant Applied Stress 

Constant initial strength can be assumed if it is possible to determine it 

for a specific object through some nondestructive.test or if the manufacturing 
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process is of high quality and the variance of the distribution of the initial 

strength is very small. 

Constant applied stress can be achieved in laboratory tests, where all 

the stresses can be carefully controlled, Also many electronic items are 

operated under essentially constant stresses. The constant applied stress can 

be constant in time or applied repeatedly on the object. In the first case 

the deterioration is continuous in time and in the second it is a function of 

the number of loadings (cyclic damage). 

Even in this appa~ently simple situation the rate of wear can exhibit 

markedly different behavior. If the medium in which wear occurs is highly 

complex the loss of strength will again be a stochastic function of time, 

19 Such a case arises in the study of corrosion, aging and creep of metals, 

where the medium is very complex and the propagation of the loss of strength 

from a region to another is affected by the properties of that particular 

region which are random in nature. 

In certain cases the mean rate of loss of strength is constant and the 

picture of Fig. 2.17 applies (as an example we invoke the creep of metals in 

the region of steady state creep; in general, in the range of temperature 

between 0.4 and 0.7 of the melting point, metals creep with a strain rate 

nearly. constant 31). The stochastic nature of the rate of wear and the con­

stancy of the mean rate of wear lead to a normal distribution for the lifetime. 

We recall that the normal distribution approximates the gamma distribution when 

the number of "shocks" is very large (here the "shocks" are not induced by peak 

stresses; they are equivalent to the successive accumulation of loss of strength 

and each shock occurs at a constant rate, since we assumed constant mean rate 

of loss of strength). A case of turbine b~ade failures due to creeping is 

reported in Ref. 28 and the lifetimes were found to be normally distributed. 
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An important case is when the mean rate of wear decreases with time 

(Fig. 2.18). This situation arises when strengthening of the object occurs. 

Then the loss of strength increases logarithmically with time. Such a pheno-

menan is observed when aging is due to some diffusion process, like diffusion 

of a metal into another, oxidation of a metal, where the oxide acts as a pro-

tective layer (Al), creeping of metals in the region of logarithmic creep, 

et al. 

In this case the lifetimes are lognormally distributed, The justification 

is just as before (it takes a large number of shocks, i.e. elementary losses 

of strength, for failure and thus the loss of strength is normally distributed; 

but the loss of strength is a logarithmic function of time, therefore the 

lifetimes are lognormally distributed). Examples of several electronic items 

(resistors, transistors, diodes) where the lifetimes were found to fit the 

lognormal distribution under constant stresses are given in Ref. 32. Degrada-

tion was found to occur due to some diffusion process with strengthening (for 

thin resistance films, for example, the degrading process was oxidation of the 

film the rate of which was decreasing with time due to the acumulation of 

oxide). 

The previous cases assumed that the stress was constant in time. When 

the stress is applied repeatedly the case of cyclic damage results. In general, 

28 29 33 we expect a lognormal distribution for the cycles to failure. » ' Examples 

of steel and aluminum wires whose lifetimes conformed with the lognormal dis-

tribution are given in Ref. 33. In Ref. 28 an example involving gear teeth 

failure under essentially constant stress is reported. 

Finally, it is of interest to note that the variance of the rate of loss 

of strength is proportional to the square of the mean wear rate, as it can be 

easily shown by taking the variance of Eq. (2.29) and recalling that the 
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Figure 2.18. A Realization of the Rate of Loss of 
Strength With Decreasing Mean Rate 
of Wear. 
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variance of p(t) is constant. The implication of this is that when the mean 

rate of wear is constant the same is true for the variance of v(t), while for 

decreasing v(t) the variations of v(t) about the mean value v(t) decrease 

(Fig. 2.18). 

2. Variable Initial Strength and Constant Applied Stress 

The previous discussion holds for objects of high quality the initial 

strength of which is practically constant. However, if the initial strength 

varies considerably more work is needed to determine the distribution of 

lifetimes. 

Assume that in a lot of objects we can distinguish k groups, where the 

members of each group have approximately the same initial strength. Then 

knowing the distribution of time to failure Fi(t) of each group we simply use 

superposition to find the distribution for the whole population, i.e. 
k 

F(t) = ~ pi Fi(t), where pi is the percentage of the lot belonging to the 
i=l 

ith group. Fig. 2.19 illustrates the situation when there are two groups. 

The number of objects 1n eacn group is the same (i.e. p1 = p
2 

= 0.5) and the 

first group has initial strength s01 and the second s02 (the reference strength 

is the same for both groups). The objects in each group fail according to the 

densities f 1 (t) and f 2(t) (lognormal) and the failure density for the lot is 

1 1 
f(t) = 2 fl(t) + 2 f2(t). 

If the initial strength is normally distributed we can use the previous 

method of superposition by dividing the normal distribution into. several areas; 

each group will have as initial strength an average value representative of 

each area and the weighting factor will be the area itself. As an example, 

assume the distribution has a mean m and standard deviation cr; a. possible 

division into areas is as follows: 
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Figure 2.19. Failure Distributions for Objects With 
Different Initial Strength Under the Same 
Applied Stress. 
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group 1: 801 m pl = 0.683 (area under the curve between m-o and m+a) 

group 2: 802 m +30 
P2 = 0.135 2 

3: 8
04 

5o 
0.021 group m +- p3 = 2 

4: 8
04 

30 0.135 group = m p4 2 

5: 8
o5 

50 0.021 group = m P5 = 2 

In the discussion of the initial strength of components it was stated that 

in many practical cases we can not assume that the defects present support each 

other but we must focus our attention to the weakest link of the object. For 

example, the dielectric of a capacitor contains impurities which are conductive; 

then the weakest link of the capacitor is the largest such impurity which causes 

a reduction of the breakdown voltage of the capacitor. The same situation 

appears when the strength of materials is primarily determined by the largest 

defect present, as it was mentioned in the discussion of extreme value distri-

butions. 

The initial strength is now described by the asymptotic distribution of 

minimum values. Assuming that the lifetime is linearly related to the initial 

strength, we can expect its distribution to be again the extreme value distri-

bution of minimum values (see the section on extreme value distributions, 

example of failure of surfaces due to chemical corrosion in the presence of a 

large number of pits). 

More generally, it may be assumed that the lifetimes of each link follows 

a gamma distribution and the lifetime of the object is described by the Weibull 

distribution. 

Naturally in a real situation the initial strength will never be of 

exactly the normal or extreme-value form, As a result the lifetimes will have 

a distribution which will be between the lognormal and the Weibull distributions. 
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A plot of the data on Weibull and lognormal paper will help to choose the 

appropriate one. 

3, Constant Initial Strength and Variable Applied Stress 

The simplest case for failure under varying stress is that depicted in 

Figs. 2.7 and 2.16, where failure occurs instantaneously when a random peak 

occurs. The strength of the object is simply the maximum stress it can with­

stand and its failure is not due to aging. The distribution of lifetimes is 

naturally the exponential. 

When the peaks add a single injury each time and they occur at a constant 

rate, the loss of strength will be again that of Fig. 2.17 and a gamma or 

normal distribution will describe the lifetimes, as it has already been 

mentioned. 

If the distribution of lifetimes under constant stress is known and the 

applied stress is a random variable of known distribution the method of super­

position may be used, In Fig. 2,20, the simple case of devices with the same 

initial strength is considered (i.e. resistors). At constant stress s1 they 

fail according to the density f
1

(t). For a lower stress s2 the obey the den­

sity f 2(t) which is more spread out. If there is a probability pl of encounter­

ing the stress s1 and p2 = l-p1 of operating under the stress s2, the lifetimes 

will follow the density f(t) = p1 f 1 (t) + (l-p1) f 2(t), 

If the stress is normally distributed (as it can be usually assumed) we 

find the weighting factors as we did in the case of variable initial strength. 

4. The General Case 

When all the variables are random (initial strength, stress) the problem 

is extremely complicated. A detailed study of the particular situation is 

necessary in order to make simplifying assumptions which will hopefully lead 

to reasonable answers. 
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Figure 2.20. Failure Distributions for Objects With the Same 
Initial Strength Under Different Applied Stresses. 
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Discussions of various aspects of the problem can be found in Refs. 19, 

27, 28, 30 and 34. 

2.B.4 The Failure Rate 

The distributions examined in the previous sections can be used to 

describe a specific behavior of the failure of devices, like failures due to 

chance or some aging mechanism. In some cases simple techniques can combine 

the distributions to describe more complex situations (e.g. superposition can 

combine failures due to chance and some aging law). 

The general behavior of failures is very effectively studied with the use 

of the hazard function (failure rate). For convenience we repeat here some 

equations developed in Sections 2.A.3 and 2.B.l, namely 

h(t) = f (t) 
1-F(t) 

= f(t) _ 1 dR(t) 
R(t) - - R(t) dt 

Therefore we can express the quantities of interest as follows: 

reliability: R(t) 
- f..t h(T)dT 

0 = e 

-ft h(T)dT 
failure density: f(t) = h(t) e 0 

failure distribution: F(t) = 1 - e 
-ft h(T)dT 

0 

(2.5) 

(2. 7) 

(2.34) 

( 2. 6) 

A generic hazard function is sholim in Fig. 2.6. No cotrmlon distribution 

function exists with failure rate exhibiting this behavior. However, the 

curve can be modeled mathematically as it will. be shortly shown; then, using 

the assumed model for h(t) the reliability and the failure distributions can 

readily be found. Some possible models are the following: 

i) Piecewise-linear model. The failure rate curve (Fig. 2.6) is divided into 

three distinct regions and a straight line approximates each region (an example 

is given in Ref, 8). 
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ii) Composite model. Each of the three regions is approximated by an 

appropriate distribution, Thus the burn-in period could be represented by a 

Weibull distribution with decreasing hazard function (i.e. a < 1); from t 1 to 

t 2 (Fig. 2.6) an exponential model could be assumed and from t 2 to oo an appro­

priate distribution with increasing failure rate. 

iii) Superposition. If it can be estimated what percentage of the population 

is more likely to fail due to early failures, chance failures and wearout, one 

can use superposition and write the density as 

where f 1(t), f 2(t), f
3
(t) are densities approximating the three regions and 

pb, p , p are the weighting factors for burn-in, chance failures and wearout 
c w 

(naturally, pb + pc + pw = 1). Difficulties may arise in determining the 

weighting factors. 

When we have failure data we can use a slightly different approach. By 

plotting the data on probability paper we may be able to identify the various 

mechanisms of failure (for example, plotting on Weibull paper we may find 

distinct groups of points well fitted by straight lines, which means that 

several Weibull distributions represent the data; for an application see 

Ref. 35). Then we simply find the parameters of the distribution for each 

group and the sum of the hazard functions is the model for the hazard function 

of the population. 

The distributions and the various models for the failure rate are useful 

tools in the hands of the analyst who may wish to study in detail the failures 

of certain objects, However in analyzing complex systems we seldom (if ever) 

use them; the exponential model is universally used and a constant failure rate 

is assigned to each component. This approximation is essential if methods for 
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the study of failures of complex systems, like fault trees, are to be advanced. 

Then it is natural to investigate how accurate such an approximation is • 

. Laboratory tests or operating experience yield a mean time to failure m, 

which is used in the exponential distribution. Of course, this MTTF is not the 

result of chance failures alone. If R(t) is the true reliability of the com-

5 36 ponent, the following is true ' 

R(t) ~ e -t/m for t ~ m (2.35) 

This inequality implies that the reliability of the component is underestimated 

when the exponential distribution is used with MTTF that of the aging component 

(in all practical applications the condition t ~ m is satisfied). 

Another implication of the inequality is that the exponential distribution 

predicts a shorter interval (O,t ) of successful operation at a given relia­exp 

bility level than the true interval (O,tt ) which would have been predicted rue 

by the true distribution. The percent error (PE) is defined as 

t - t true exp 
100 

t 
PE = 

exp 

and it has been calculated for several distributions. 37 If the underlying 

distribution is the log-normal, this error is a function of the reliability 

level and the ratio ~ where s is the standard deviation and m the mean for the 
m 

log-normal distribution, It is given by 

(~) 2] ( 2-l) + lnR 100 
m 2 PE = - ..._.. ___ --=---;;"'"-:=-----'---

.R.nR 

1 + 

where R is the specified reliability and z is the solution of the equation 

1 

fi;r 
J[oo exp t ~2) dx • R 

Fig. 2.21 shows the behavior of PE for R = 0.50 (median life). 
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Figure 2.21. Percent Error vs the log-normal Ratio 
s/m for the exponential median life. (Ref 37) 
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For the gamma distribution the percent error depends on the value of the 

shape parameter r. It is estimated by 

PE - -

where 

(f + lnR)1oo 
lnR 

In Fig, 2.22 the percent error for the 90% reliable life (i.e. R = 0.90) is 

shown. Observe that for r = 1 the percent error is zero as expected, since 

the gamma distribution reduces to the exponential. 

Finally, for the Weibull distribution PE depends on the shape parameter 

a as follows 

Fig. 2.23 shows PE for R = 0.90. Again, for a = 1 PE is zero, since the 

Weibull reduces to the exponential. 

A final word of caution is in order here; when one uses the exponential 

model, it must be established that the stresses on the component are not much 

different than those under which the failure rate used was derived. If there 

is substantial difference the failure rate may be dramatically different and 

adjustments should be made. These adjustments are accomplished with the use 

of correction factors, which account for the different operational conditions 

of the device. Discussions of proposed models can be found in the 

f 
6,7,8,27,32,42 re erences. 
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2.B.S Estimation of Parameters 

In order to estimate the parameters of a distribution, which we believe 

from physical considerations that it represents the population, there are two 

questions that should be answered first, namely: 

a) how was the data obtained, and 

b) what method will be used 

The first question arises in life tests, where n units are placed into 

operation and their times-to-failure are recorded. If all the units fail the 

data is called complete, otherwise it is incomplete. Incomplete data results 

if the test is terminated (truncated) at a time t while some units are still 
0 

operating. Then the random variable is the number of failures r which have 

occurred. The test may also be terminated when the rth failure occurs, in 

which case the random variable is the time of the rth failure t , These types 
r 

of data are called singly censored. Multiply censored data is obtained when 

observations are lost, units are withdrawn from the sample during the test, 

the units are put into operation at different times etc. 

Finally, if the observations and censorship are made on the· <~ components 

that were initially put into operation the test is called a nonreplacement 

test, while if the failed or censored components are replaced by new ones the 

test is termed as being one with replacement. Knowledge of these conditions 

is necessary for the correct treatment of the data and the extraction of the 

maximum possible amount of information from it, 

The method to be used to estimate the parameters of the theoretical 

distribution is a very involved subject; details on the principles and criteria 

which are applied may be found in Section 2.A.S of this report and in 

references 6,7,8,12 and 25. 
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Basically there are two methods of approach: 1) numbers are calculated 

for the unknown parameters by a specified method and these numbers are assumed 

to be the "best", in some sense, estimates of the parameters (point estimation), 

and 2) ranges of the unknown parameters are calculated and the probabilities 

that the true values of the parameters lie in these ranges are given (confi-

dence intervals, interval estimation). 

Point estimates are obtained either by the method of matching moments or 

the maximum likelihood method. The last method is more flexible and is consid-

ered superior to the first. Forming the likelihood function 

(2 .13) 

we can estimate any parameter ei by selecting that value which maximizes L or 

log L, since it is easier to work with the logarithm. This expression of the 

likelihood function is true for complete tests. For truncated or censored 

tests it must be changed to include the additional information. Thus, if the 

test is terminated at time t the likelihood function will be 
0 

[1-F(to>] n-r 

(2.36) 

where F(t) is the cumulative distribution function of the assumed probability 

density f(t1; 8p ••• ,em). Thus the "best" estimate of 8i is the solution of 

the equation 

CllnL 0 
aei = (2.37) 

1\ 

This estimate ei is a random variable (different samples will, in general 
1\ 

yield different e.'s) and its variance is calculated from 
]. 

var e = - 1 

i a21nL 

ae 2 
i 
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for large n. Having the mean and the variance of the estimate we can find 

confidence intervals for ei either using Tchebycheff's inequality or using 
A 

the fact that for large n the distribution of 6i tends to become normal. Of 
A 

course, if the exact distribution of the estimator ei is known (see exponential 

distribution below) we can find exact confidence intervals for samples of any 

size and we do not need to resort to these approximate methods. 

Having point estimates and confidence intervals for the parameters of a 

distribution F(t;6.) we can attempt to answer two very important questions, 
l. 

namely: 

a) Can we give confidence intervals for R(t; 8i) = 1-F(t; 8i)? If times-to­

failure are studied, this is equivalent to assigning confidence intervals to 

the reliability of the units, e.g. What is a 100(1-a) percent lower confidence 

limit on the probability that the units will survive a given interval of time 

(0, t)? 

b) Reversing the problem in (a) we can seek confidence intervals for the 

time which corresponds to a given reliability, that is, can we make the state-

ment "the probability that the units survive past the time \ is at least 

y(pre-assigned reliability)" and be (1-a)lOO percent confident about the truth-

fulness of this statement? The quantity ty satisfies the equation R(ty) = y 

or F(t) = 1-Y and it is called the (1-y) fractile or quantile of F(t), y 

Maximum likelihood point estimates of these quantities can be found by 

simply using the estim'ates for the parameters, Thus, for the extreme value 

distribution F(t) = exp [- exp(-a(t-S))] a point estimate for the reliability 
A A A 

corresponding to a given time t is R(t) = 1-exp [-exp(-a(t-S))]. The (1-y) 

quantile is the solution of 

-a(t -S) 
-e y 

e = 1 - y 
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hence ty = ~ - ~ ln (ln l:Y) 
and a point estimate is 

A 1\ 1 ~ 1) ty "" f3 - -;::: ln ln l-y 
a 

The estimation of confidence intervals for R(t) and t is more complicated. . y 

If the distribution has only one parameter (e.g. the exponential), then the 

confidence limits on the parameter can be used directly to find confidence 

limits for R(t) and ty• However, when there are more than one estimated param­

eters this procedure is not applicable. Asymptotic results regarding the mean 

and variance of any function G(8i) of the parameters (like R(t; 6i) and ty(ei)) 

are given in Ref. 25; these can be used to find confidence intervals, as men-

tioned before. Since we will give the results for each distribution later we 

do not present the method of Ref. 25. 

1. The Exponential Distribution 

Point estimates and confidence intervals for the MTTF 8 (= f) have been 

found for all the types of tests. The results presented here are taken mainly 

from Ref. 43, 
1\ 

In all the tests 6 is estimated from 

A T e = -r (2.39) 

where T is the total operating time of censored, failed and unfailed components 

and r is the number of failures observed. The following results at~ obtained 

with the method of maximum likelihood. 

For Tests Terminated at the rth Failure: (r ~ n) 

r 
T = l:; ti + (n-r)tr 

i=l 

T = nt r 

(without replacement) 

(with replacement) 
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r k 

T = ti + ,E t. + (n-r-k) t (k censored units at times tj, 
i=l j=l J r no replacement) 

(2.42) 

(the expression for T can be modified along these lines to account for replace-

ment of censored or failed components). 

Two-sided 100(1-a) percent confidence interval: 

2T < e < --=-z .....;;;;._ __ 

xl- £ 2r 
2' 

one-sided 100(1-a) percent confidence interval: 

2T 
......,2-- < e 
Xa, 2r 

(2.43) 

(2.44) 

2 where X 2 is the upper a percentage point of the chi-square distribution a, r 

obtainable from tables (notice that x 2 
2 is the value which is exceeded with o:, r 

probability a; this clarification is important, since some tables give as 

~, 2r the value which is not exceeded with probability o:). 

Since the distribution has only one parameter it is straightforward to 

find confidence intervals for the reliability and the quantiles. The point 

A -t/S A A 1 
estimates are R(t) = e and ty = 8 log y• 
Two-sided 100(1-a) percent confidence intervals: 

( 
2 

~ X a 
t (- ~ 2,2r -- X < e < l-a/2,2r exp 2T e exp - 2T 

2T 1 1 log - 2T log -
X < ty < y 

2 2 
Xa/2, 2r xl-a/2,2r 

one-sided 100(1-a) percent confidence intervals: 

exp 
( 2 \ 
\ X~~2r 1 < e 

-t/8 

95 

(2.45) 

(2.46) 

(2.47) 



2T log ! 
--::' __ .,_y < t 

2 y 
\x,2r 

(2.48) 

Example. Fifteen devices are put into operation and the test is terminated 

when three fail. Their times to failure are t 1 = 83 hr, t 2 = 95 hr and 

t 3 = 110 hr. Here n = 15 and r = 3 (no replacement). Therefore a point 

estimate for the MTTF is (using Eqs. (2,39) and (2.40)) 

3 
r; t3 + (15-3) t3 

e = i=l = 16~8 = 536 hr. 

The one-sided 95% confidence interval is (a= 0,05), Eq. (2.44), 

2T < e 
x2 

6 0.05, 

From tables find 2 12.6, hence we X = 0.05, 6 

e > 
2~;~~8 = 255 hr 

and we can state that we are 95 percent confident that the true MTTF is at 

least 255 hr (strictly speaking, we can only say that if we repeat the test 

many times then the estimate of e will exceed 255 hr in 95 percent of the 

tests), 

A point estimate of the reliability at 100 hr is 

R(lOO) = exp(-100/536) = 0,83 and the one-sided 95% confidence interval is 

R(lOO) > e-l00/ 255 = 0.67 

Put into words, there is a probability of at least 0.67 that a unit will 

survive for 100 hr and this conclusion is true 95 percent of the time. 

For the 0.10 quantile (y = 0.90) a point estimate is 

"' 1 
t0.9 = e log 0.90 = 258 hr 
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and the 95% lower confidence limit 

1 t 0 •9 > 255 x log 0 •90 = 123 hr 

which means that lOOy = 90 percent of the units of a lot will survive for at 

least 123 hr and this statement is true 95 percent of the time. 

For Tests Terminated at Time t : 
0 

r 
T = E ti + (n-r)t

0 
(without replacement) 

i=l 

T = nt (with replacement) 
0 

r k 
T !: ti + !: t. + (n-r-k) t (k censored units 

J 0 
i=l j=l no replacement) 

at times 

two-sided 100(1-a) percent confidence intervals: (r < n) 

2T < e < 2T 
2 2 

Xa/2, 2r+2 xl-a/2,2r 

~ X~/2,2r+2 1 < exp ~ 
2 

~ < R(t) xl-a/2z2r 
exp 2T 2T 

2T 1 2T 1 log - lop.;-
Y. < t < '"' Y. 

2 y 2 
Xa/2, 2r+2 xl-a/2, 2r 

one-sided 100(1-a) percent confidence intervals: 

( 
~,2r+2 ~ 

< e, exp 2T l 2T 
2 

Xa, 2r+2 

< R(t), 
2T log .! 
--::---....!..y < t 

2 y 
Xa, 2r+2 

(2.49) 

(2.50) 

t., 
J 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

Example: Ten units are tested for 100 hr (no replacement) and no failures are 

observed. Then T = 10 x 100 = 1000 hr and a lower confidence interval can be 

given at 95% confidence level. 

2 X 1000 
-~=-=-- ::::::: 334 hr < e 5.99 

2 From tables we find x0 •05 , 2 = 5.99 hence 
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A point estimate of e cannot be given since no failures occurred (r=O). The 

95% confidence intervals on reliability and the 0.1 fractile are 

and 

R(t) > exp (- 3~4) 
1 

ty > 334 x log 0 •9 = 161 hr 

In some cases it may be impossible to find the total operating time T 

(e.g. when the times of failure of the devices ti are not known). Then we can 

still give lower bounds to the reliability of the components using non-

parametric methods. These results are not restricted to the case where the 

underlying distribution is the exponential, that is, they are distribution 

free, 

For truncated tests (i.e., observations are made for an interval (O,t ) 
0 

and r failures are observed) a lower bound to reliability at a 100(1-a) percent 

confidence level is 

1 

F a,2r+2,2n-2r 

(2.56) 

where F 2 +2 2 2 is the upper a percentage point of the F distribution with a, r , n- r 

(2r+2) degrees of freedom in the numerator and (2n-2r) degrees of freedom in 

the denominator. 

If the underlying distribution is assumed to·be exponential, the above 

result leads to the following lower bound for the MTTF 

t 
o < e 

ln [ 1 + ( ~~!) Fa, 2r+2, 2n-2J 

(2.57) 

Example: Consider the previous example with 10 units in operation for 100 hr 

with no failures. The non-parametric lower bound to the reliability at 95% 

confidence level is 
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1 R_ ( 100) = ----,--____:::........___ = ----,---:-:- = 0. 7 4 
1. l + F l + 3. 49 

10 0.05,2,20 10 

Assuming an exponential distribution the lower bound to the MTTF is 

100 = 010.03 ~ 333 hr < e 
ln 1. 349 

which is very close to the bound found before (334 hr). This is expected, 

since no failures occurred, thus no information (failure times) was lost. 

2. The Gamma Distribution 

The method of maximum likelihood leads to a system of equations for the 

parameters of the distribution, which is too cumbersome to solve44 , 45 and since 

the distribution is not used much in reliability studies we do not present the 

analysis here. Of course, when complete data are available a quick estimate 

of the parameters can be made, by the method of matching moments or by probabil-

ity plotting. 

3, The Normal Distribution 

For complete samples the mean and standard deviation are estimated from 

the sample mean and unbiased standard deviation, i.e. 

n 

E ti 
"' i=l m = n 

[ n , T/2 T'2 I: (ti-m) 
A i=l a = = n-1 

two-sided 100(1-a) percent confidence interval: 

"' m -
A 

t _q_<m<~+ 
a, r ..;n 

" 
t £.... 
a,r rn 

(2.58) 

(2.59) 

(2.60) 

where t is found from tables of the t-distribution for two-sided confidence a,r 

interval estimation and the degrees of freedom r is n-1. 
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One-sided 100(1-a) percent confidence intervals can be found using similar 

tables for t and they are of the form cx,r 
" A 

t £_ m- lower bound (2.61) 
cx,r Jn 

" "' a and m+ t - upper bound (2.62) 
a,r;n 

Since the distribution has two parameters, the calculation of confidence 

intervals for the reliability and the fractiles is not simple and tables must 

be used. 

The (1-y) quantile satisfies the relation 

or ty=m + yya where Yy is the standard normal variate, such that N(yy) = 1-y. 

Confidence limits on Yy at a (1-a)lOO percent confidence level are given in 

tables, 25
»
46 Given y, a and the size of the sample n Table A.9 of Ref, 25 

(or, Table 8.4 of Ref. 46) gives the one-sided lower confidence limit on 

Yy as - k. (Notice that in the tables y and a are what we call here (1-a) and 

"' "' (1-y)), Then the corresponding limit on ty are m- k a. Table 8,3 of Ref, 46 

"' "' gives the two-sided confidence limits m - ka (the number k is called a toler-

ance factor). Notice that these limits are not the same with the ones given 

before which utilize the t-distribution; the latter give confidence limits for 

the mean only, 

Confidence limits on the reliability of a given interval (O,t) are found 
" 

Now k = ~ and from the same tables the 
" 

by reversing the above procedure, 
a 

value of y is found given k, a and n. The following example will clarify the 

procedure, 
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Example: Ten units fail at times t 1 = 1500 hr, t 2 = 1550 hr, t
3 

= 1625 hr, 

t 4 = 1715 hr, t 5 = 1750 hr, t 6 = 1785 hr, t 7 = 1800 hr, t 8 = 1865 hr, t
9 

= 1900 

hr and t 10 = 1950 hr. Assuming a normal distribution we estimate 

m = 

10 
1:::: ti 
i=l 

10 

a = 14 7 hr 

= 1744 hr. 

Since t = 1.833 (one-sided) the 95% confidence interval for the 0.05,9 

mean is 

m > 147 1744 - 1.833 x r.= = 1659 hr 
ylO 

We now seek a one-sided 95% (a=0.05) confidence limit on the 0.1 fractile of 

the distribution (y=0.9). From Table A.9 of Ref. 25 we find for a=0.05, y=0.09 

(y=0.95 and a=O.l for the Tables) and n=lO that k=2.355 therefore 

t > ~ - ko = 1744 - 2.355 x 147 = 1398 hr 0.9 

and we claim that in 95 percent of future tests the lifetime of 90 percent of 

the units will be at least 1398 hr. 

To find confidence intervals for the reliability in an interval of 2000 

hr we calculate 

We wish to find the 95% confidence interval, thus the tables for k = 1.465 and 

k = 2.355, y = 0.95 and n = 10 yield a = 0.25 and 0.10. Using simple interpola-

tion (another method is described in Ref. 25) we find that 

- 1 2.355- 1.74 ~ 
a- o. + 0.15 x 2.355- 1.465 =0.2. 

In our notation 1 - y = 0.2 =} y = 0.8 and we make the statement that with 

confidence 95% the reliability over an interval of 2000 hr is at least 0.8. 
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For truncated tests the results become more complicated. 7' 14 Assuming 

that when the test is terminated at t only r failures have occurred we define 
0 

the degree of truncation as 

h = n-r 
n 

and the quantity 

Then the parameters of the distribution are found from 

r 

:E (t -ti) 
A i=l 0 cr = _;..;,__ __ _ 

r 
g (h, z) 

(for an unbiased estimate use r-1 in the denominator) and 

A A 

(2.63) 

(2.64) 

(2.65) 

m = t
0 

+ z(h,y)cr (2.66) 

The procedure is as follows: from the data and Eqs. (2.63) and (2.64) we 

calculate h andy. Table X of Ref• 14 then gives z(h,y) and the quantity 

~'(z) which is used to find g(h,z) from the equation 

r 
g (h ' z) = -;------:--;-:-'7'--.:-­

(n-r)~' (z) -rz (2.67) 

A A 

Having g(h,z) and z(h,y) the parameters cr and m can be calculated from Eqs. 

(2.65) and (2.66). 

Confidence intervals for the mean can be found by utilizing the fact that 

for large samples m is approximately normally distJ:ibuted with variance 

"'2 cr r J.lu (z) 

where J.lll (z) is again found from Table X of Ref. 14 knowing z. Therefore, we 

have two-sided 100(1-a) percent confidence interval 
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( 

' (2 .68) 
"2 

~ - ka/2 ~ ~11 (z) < m < 

where ka/ 2 is the number of standard deviations of a normal distribution such 

a that the value m + ka/ 2a is exceeded with probability 2 . 

Similarly the following one-sided confidence intervals are obtained 

A 

m 

and m < ~ + 

"'2 a r ~11 (z) < m 

A2 
a r ~11 (z) 

(2.69) 

(2.70) 

Confidence intervals for the reliability and the fractiles can be found as 

before using the mean and the unbiased variance and tables 

Example: Suppose that the test mentioned before was terminated at t = 1850 
0 

hr. Then only r = 7 failures are recorded, The degree of truncation is 

n-r 3 
h = 11 = lo = o.3 

and y is calculated to be 

y = o. 72 

From Table X, Ref. 14, we find z(0.3;0.72) =- 0.54, ~t(-0.54) = 1.156 and 

~11 (-0. 54) 1.141, hence, from Eq. (2.67), 

7 
g(0, 3, -O.S4) = 3 X 1,156 + 7 X 0,54 = 0 •965 

Therefore 

A 

a = 121 hr. 

A 

and m = 1850 - 0.54 x 121 = 1785 hr 

Also, since k0 •05 = 1.64 (from tables of normal distribution), a lower 

bound for the mean at a confidence level of 95% can be given 

m > 1785 - 1.64 1.141 = 1707 hr 
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4. The Log-Normal Distribution 

Since the logarithm of the random variable is normally distributed it 

suffices to take the logarithms of the observations and use the methods for 

the estimation of parameters of a normal distribution. 

5. The Weibull and Type I Extreme Value Distributions (Smallest Values). 

The Weibull distribution is to the Type I extreme value distribution of 

minimum values as the log-normal distribution is to the normal distribution, 

that is, if in the extreme value distribution 

F(t) = 1 - exp (- ea(t-~)) 

we make the transformation t = ln t' and~= ln ~~we get the Weibull distribu-

tion 

F(t) = 1- e-(t'/~')ct 

Therefore methods for estimating the parameters of the one distribution can 

also be applied to the other by a simple transformation. 

The estimation of parameters leads to equations which cannot be solved 

analytically and iteration or Monte Carlo techniques are employed, A review 

and comparison of the various methods is given in Ref. 47. Estimation by the 

method of maximum likelihood is presented in Ref. 45 and 48. 

Similarly, confidence intervals on the reliability and the quantiles can-

not be found without the aid of the computer and usually tables are generated 

for certain parameters which help in determining S" '.n intervals. Thus, in Ref, 

49 tables are given for the estimation of an exact lower confidence bound on 

the reliability (these tables can also be used for confidence intervals on the 

fractiles 47). In Ref. 50 confidence intervals on the parameters are estimated 

and in Ref. 51 intervals for the reliability and quantiles are given; in both 

references complete data are considered and the maximim likelihood method is 

used, 
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We present here a method for estimating the parameters with the use of 

52 53 tables based on a method called best linear invariant estimation. ' If a 

sample of n units is put into operation and the test is terminated when m units 

fail (m s n) the estimates for the parameters of the extreme value distribution 

are 

m 
B = .EA t 

i=l i,m,n i 
( 2. 71) 

and 

a = .E c. t [ 
m l-1 

i=l 1.,m, n i 
(2.72) 

where Ai and Ci can be found in the tables of Ref. 52 for n = 2, .•• ,15 ,m,n ,m,n 

and m = 2, ••• ,n (for n > 15 see Ref, 52 and 49). 

If the distribution is Weibull the above procedure is applicable of the 

failure times and the parameterS'= exp(S). 

The (1-y) quantiles are 

1 (.!.) (extreme value distribution) (2.73) ty = 13 + - ln ln a y 

and ( 1 t/a (Weibull distribution) (2.74) t = 13' ln-y y 

Point estimates are found using the point estimates of a and S(S'). A lower 

bound on ty at confidence level 100(1-a) percent is given by 

::::s 1 
(vy) 1-a 

(extreme value distribution) (2.75) ty -;::;:; 
a 

and t' :2: exp y [s-~h)lj (Weibull distribution) (2.76) 

where (v ) is found from tables in Ref. 53 for y = 0.90, 0.95 and 0.99. 
Yl-a 

A lower bound to reliability is not readily available from these tables, 

since values of V are listed for only three values of y. One calculates 

a<'S-t> and if this value is approximately equal to a tabulated value of vy 

(for the fixed m and nand the specified confidence level), then the 
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corresponding y is an approximate bound to the probability of survival past 

the time t(extreme value distribution). Of course, other methods may be used 

to find such a lower bound, like the one described in Ref. 49 or the non-

parametric result given in the discussion of the exponential distribution (for 

tests terminated at a fixed time) or the asymptotic method described in Ref. 

Ref, 25. 

Example: Ten units are tested and five fail at times (hr) t
1 

= 60, t 2 = 95, 

t 3 = 124, t
4 

= 140 and t 5 = 160, The underlying distribution is assumed to 

be Weibull. To find the parameters we first calculate the natural logarithms 

of the times to failure, ln t 1 = 4.1, ln t 2 = 4.55, ln t 3 = 4.83, ln t 4 = 4.94 

and ln t 5 = 5.07. Using the tables of Ref. 52 for n = 10 and m = 5 we find 

(Eqs. (2.71) and (2.72)) 

"" S = - 0.1155 X 4.1 - 0,0908 X 4,55 - 0,0513 X 4,83 + 0,0009 X 4.94 + 

+ 1.2568 X 5.07 = 5.259 

and a = [- 0,1851 X 4,1 - 0.1818 X 4.55 - 0.1606 X 4.83 - 0.1253 X 4.94 + 

J-1 + 0.6529 X 5.07 = 3.02 

Therefore, the parameters of the Weibul1 distribution are a = 3.02 and 

S' = e5
•
259 = 192 hr. 

For n = 10, m = 5, y = 0.95 and 1-a = 0.95 table 4 of Ref. 53 gives the 

value (V ) = 8,39 and we calculate 
0.95 0.95 

exp [s.259 - ~:~~] = 12 hr. 

which means that the minimum life, for which the reliability is 0.95, is J.2 hr 

with confidence 95 percent. 

6. Type I Asymptotic Distribution of Maximum Values 

The method of maximum likelihood will be used to estimate the parameters 

a and S. The results are taken from Ref, 54, 55 and 56, 
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If n observations are available the estimates of a and (3 are the solutions 

of 

(2.77) 

(2.78) 

These equations are solved by some iterative procedure in a computer 

(notice that the first can be solved independently), As a first approximation 

the estimates resulting from the method of moments may be used, that is, the 

solutions of 

n 

I: ti A 0.577 i=l 
(31 + = = t A 

al n (2.79) 

n 

1.645 
E <ti-t) 

s2 and i=l = = A2 n-1 
al 

(2.80) 

An estimate of the return period is 
1\ 1\ 

A a(t-(3) T(t) :::: e (2. 81) 

and in most applications it suffices to assume that the probability of T(t) 

1\ A 2 
being in the interval 0.32 T(x) and 3.13 T(x) is 3 (= 0.68). 

The (1-y) quantile (i.e., the solution of exp [-exp(-a(ty-(3))] = 1-y) is 

t = (3 - .!. ln (1n _l._) (2. 82) y a 1-y 

and a point estimate i~ 

ty = S - t ln ( ln l:Y) (2.83) 
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Its variance is 

(2.84) 

For large n we assume a normal distribution and we can claim that there 

is a probability (1-y) that the largest observed value in any year will be 

A " at most ty where \ lie~ in the interval \ ± (J and this will occur 68.2 t 
y 

A A 

percent of the time (we could also consider the interval t ± 2 a 
y ty 

in which 

case the confidence rises to 95.4 percent). In a similar way we can define 

one-sided bounds for ty; thus, there is a probability (1-y) that the largest 
A A 

value in any year will be at most ty + 1.64 crt with confidence 95 percent 
y 

The previous result may also be presented in another form: a point esti-

mate of t = S + ~ (y is called the reduced variate) is Y a 

( 2. 85) 

and its variance is 

(2.86) 

We now wish to predict the maximum observation in the next m samples 

(years). We already know that if the distribution of the maximum in one year 

is known then the distribution of the maximum in the next m years will be again 

the asymptotic distribution of maximum values with parameters easily obtainable. 

However, now we only know estimates of the paramete~~ of the distribution of 

maxima in one year and as a result the best we can do is find the mean and the 

variance of the maximum in m years, 

= S + 0.577 + lnm 
A 

a 

Writing T for this maximum its mean is m 

(2.87) 

108 

) 



and its variance 

Using Tchebycheff's inequality (Eq. (2.9)) we find that 

P [ ;;;,m - kO 'm < T m < ;;;tm + ko] > 1 - ~ 2 

(2.88) 

and, as an example, the probability that the maximum observation in the next m 
A 

years lies in the interval·~ ± 3a is at least 0,889. 
T T m m 

A C 
An approximate point estimate to the value S + A (c to be specified) which 

0: 
will be exceeded with probability y in the next m years can also be given by 

estimating 

c = - ln (1n -
1 

) + 1-y 
(1-ln ~) [ ( lnm + -'----..,.

2
n_;l;;;._-_._Y.,__ 1 + 1 • 6 4 5 1-0 • 5 77 

- ln ( ln l~y) + lnm rJ (2.89) 

If a point estimate of the probability y is needed with given c the reverse 

procedure is applied (i.e., the above equation is solved for y). 

Example: In Ret. 57 the flooding hazard for a nuclear reactor (Monticello site) 

is studied. The floods for the years 1927-1970 (n = 44) have been recorded, 

Then the maximum likelihood estimates of the parameters of the extreme value 

distribution are found to be S = 15145 ft 3/sec and ~-l = 6736 ft 3/sec, Using 

A 3 
the method of matching moments the estimates are S = 15155 ft /sec and 

A-1 3 
a = 6712 ft /sec. 

Given these estimates we can make some probabilistic statements, The 

return period of a flood of size t = 50000 ft 3/sec. is, Eq. (2,81), 

T(50000) = exp [ 50000- 15145] = 180 years 6736 

and there is a probability of 0,68 that this flood will occur in as short a 

perior as 0.32 x 180 = 57.6 yr or as long a period as 3.13 x 180 = 564 yr. 
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Reversing the procedure we can find the flood t with return period T(t) = 1000 

yr by 

3 
t = 6736 x ln 1000 + 15145 = 61600 ft /sec. 

3 thus, every 1000 years we expect one flood of magnitude at least 61600 ft /sec. 

To find the confidence limits we have 

t' = 6736 x ln 320 + 15145 = 53900 ft 3/sec, 

and t" = 6736 x ln 3130 + 15145 = 69300 ft3/sec 

therefore, every 1000 years there is a probability 0.68 that the largest flood 

which occurs is as low as 53900 ft3/sec or as large as 69300 ft 3/sec. 

We now ask the question: What is the maximum flood which has a probability 

0.90 of occurring in any year? From the quantile with 1-y = 0.90 we get a point 

estimate 

(, . 1 \ 3 
ty = t 0 •1 = 15145 - 6736 x ln. \ln 0 •96/ = 30000 ft /sec. 

For confidence limits we need the standard deviation 

3 2560 ft /sec 

hence there is a probability 0.90 that the flood in any year is at most 

3 30000 + 1.64 x 2560 = 34200 ft /sec. and this statement is correct 95 percent 

of the time. 

Finally, a prediction for a period of m = 40 yr. will be made. The 

expected mean value of the floods over the forty years :i.s 

= 15145 + (0.577 + ln 40) x 6736 = 43900 ft3/sec. 

3 and the standard deviation is found to be 10600 ft /sec. Therefore, there is 

a probability of at least 0.889 that a flood of size in the interval 

43900 ± 3 x 10600 or (12100, 75700) ft 3/sec. will occur in the next 40 years. 

"' lnm A point estimate of the most probable flood in 40 years is ~ + --,..- = 39945 
a 
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ft 3/sec, To find an estimate of the flood which will be exceeded with proba 

probability 0,05 (y = 0.05) we ca~culate c = 7.055, thus this flood is 

15145 + 7.055 x 6736 = 62700 ft3/sec, 

7. Superposition of Distributions 

Combinations of distributions lead to many problems where the parameters 

must be estimated from test data. We present here a model involving two 

exponential distributions and references are given for other models of interest, 

Suppose that components are subject to chance failures from two indepen-

dent causes; then the compound exponential model applies~ that is 

F(t) = 1 -

and 

Failure times are collected from n operating units from which r have failed 

when the test is terminated at t (truncated test). A particular unit fails 
0 

due to either one of the causes and the cause of failure can be identified for 

a failed unit; thus r 1 units have failed due to the first cause 8nd r 2 due to 

the second. We define tij to be the time of failure of the jth unit due to the 

ith (i=l, 2) 
- rl ti· 

cause, Writing ti = E ---3 , the maximum likelihood estimates for 
j=l ri 

A A A 

An estimate for the overall failure rate is, naturally, A = Al + A2• The 

variances of the estimators are given in Ref. 58 and in Ref. 59 the problem 

of estimation when the exact failure times are not known but the data is col-

lected at certain times t. is considered. 
J 
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In Ref. 19 a method is described for the estimation of parameters of the 

compound model of an exponential and a normal distribution. 

Consider now the case of a mixture of two or more distributions, i.e. 
m 

f(t) = E pi f.(t). The type of fi(t) is known and we wish to estimate its 
i=l ]. 

parameters and the mixing parameters pi. References 60, 61 and 62 deal with 

the problem when the fi(t) are normal distributions and Ref. 22 and 63 deal 

with Weib~ll distributions. 

2.B.6 Plotting Methods 

Probability plotting is an easy and fast method of not only estimating the 

parameters of a distribution from sample data but also of checking how well the 

chosen distribution represents the observations. Detailed instructions as well 

as theoretical justification of the method are given in Ref. 4. This approach 

can be employed only for complete or singly censored samples. 

A simple technique which may also be used in the case of multiply censored 

data has been developed recently. Instead of plotting the cumulative frequencies 

vs. the observations we plot the cumulative hazard function vs. the observations 

(hazard plotting method). The cumulative hazard is defined as 

t 

H(t) = I h(T)dT (2.90) 
0 

and is related to the distribution function through 

~(t) = ln[l-F(t)] (2.91) 

The theory and applications of hazard plotting are ¥resented in Re~. 64, 65 

and 66, 
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2. C, SIMPLE SYSTEMS 

2.C.l. Introduction 

The analysis of complex systems is very effectively performed with the 

use of path (cut) sets, that is, the identification of groups of events which 

together cause system success (failure). This procedure reduces a complex 

situation into a much simpler one, where events are interrelated in a manner 

which permits the direct use of probabilistic methods to calculate the 

probability of success (failure) of the system. 

The simple configurations which will be pr~sented here are not only use-

ful in the analysis of complex systems. If a component is assigned the task 

of performing a certain function, the probability of successful performance 

(reliability) is improved with the use of more than one components which can 

perform the same function (redundancy). 

In what follows we assume that the failures of the components are 

independent and that the probability of the ith component being up is pi and 

Knowing the p.'s and the configuration we will calculate the 
~ 

probability P that the system is functioning properly. In time-dependent 

situations we will calculate the reliability of the system R(t) as a function 

of component reliability Ri(t). Having the reliability we can calculate the 

mean time to failure of the system m using the equation 

m = /~(t) dt • (2. 9 2) 
0 

This equation is readily proved from the definition 

m = j:f(t)dt (f(t) = failure density) 
0 

where the substitution 

113 



f(t) dR(t) 
dt 

is made and the integral is evaluated by parts. 

Useful expressions for the MTTF can also be given in terms of the Laplace 

transforms of R(t) and f(t). Defining the Laplace transformation as 

"' -st !
00 

R(s) = e R(t)dt (2.93) 
0 

it is immediately seen from Equation (2.92) and Equation (2.93) that 

nf = R(o) • (2. 94) 

Furthermore, if 

f(s) = LT [f(t)] 

then 

= LT [tf(t)] 

thus 

df(s) 
m = - ds s=O = /~f(t)dt 

0 

(2.95) 

2.C.2. Series System 

A group of N components are said to be in series if all the components 

must function in order for the system to function (Fig. 2.24). 

From the definition it follows that 
N 

p = n p 
i=l i 

and for identical elements (p1 - P2 - ••• - PN) 

N p = p 
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Figure 2.24. Series System. 
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The reliability of the system is 

and when Ri (t) 

R(t) = Ri(t) 
i=l 

-\t 
= e 

N 
-t i~l\ 

R(t) = e 

thus the failure rate of the system 
N 

A = E A. 
i=l 

1 

and its MITF 

1 
m =-~--

N 

'E Ai 
i=l 

is 

(2. 9 7) 

(2. 98) 

(2.99) 

(2 .100) 

The series system is the only one in which components with constant 

failure rates induce a constant failure rate for the system. In all other 

configurations the reliability of the system is not exponential. 

Since the system functions if all its components function, its reliability 

is smaller than the reliability of any of the components. Another way to 

look at this is by defining T. to be the time to failure of the ith component. 
1 

Then the system fails at a time t which is 

(2.101) 

2.C.3. Parallel System 

In a parallel (Fig. 2.25) ·configuration N components are performing the 

same function and any one component can successfully continue the operation 

(i.e., N-1 failures are allowed). 

Since the system fails if all its elements fail we have 
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x, 

x2 

• . . 

XN 

Figure 2.25. Parallel System. 
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N 

Q = 1 - p = q 
i=l i 

(2.102) 

or N 

p = 1 - (1-pi) 
i=l 

(2.103) 

For identical elements 

. N 
p = 1 - (1-p) (2.104) 

The reliability is 

N 

R(t} = 1 - [1-Ri (t)] 
i=l 

(2.105) 

and for exponential components 

N -A t 
R(t) = 1 - i [1-e ] 

i=1 

and 
N N-1 N 

2: 1 -2: E 1 + m = 
Ai Ai+ Aj i=l i=l j=i+l 

N-2 N-1 N 

+:E :E :E (2.106) 
i=l j=i+l k=j+l 

For identical elements 

N 

m = L n~ 
n=l 

(2.107) 

As an example consider two units with failure rates A
1 

and A2• The 

reliability of the system is 

-A t -A t 
R(t) = 1- (1- e 1 )(1-e 2 ) 
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and its mean time to failure 

(2.108) 

R(t) 
-At -2At = 2e - e (2.109) 

and 

1 1 3 
m=-x + TI ""TI (2 .110) 

Since the system fails when all its elements fail, the time-to-failure of 

the system is related to the component failure times Ti by 

(2.111) 

2.C.4. r-out-of-N System 

A generalization of the previous case is when N identical components 

function in parallel and rare needed (instead of only one). 

The probability that any k of N components are functioning is (binomial 

distribution) 

(
N) k N-k Nl 

Pk = k P (l-p) = ki(N-k)! 

Since the system is up if at least r components are functioning, the 

probability of successful performance is 

N N 
p = I: P k = I: (~)pk(l-p)N-k 

k=r k=r 
(2 .112) 

For exponential components 

(2 .113) 
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and 
N 

m r: k~ 
k=r 

(2 .114) 

A common feature of the configurations studied above (series and parallel) 

is that the expressions for reliability are derived by merely replacing p. 
~ 

with Ri(t). The formulas for P may be interpreted as holding at every point 

in time and the state of the system is determined by the present state of 

its components. This is no longer true in the important case of a standby 

system as it will be seen shortly; the whole history of the system from t=O 

must be considered. 

2.C.5. Standby System 

In a standby (or, sequential) system one component is functioning and 

when it fails it is replaced immediately by another component, which is not 

subject to failure until it is switched on ("cold" standby). Figure 2. 26 

shows such a system with N-1 standby units. The switch is assumed to be 

perfect. 

th LetT. be the failure time of the i component with failure density 
1.. 

f.(T). Since the components are operated sequentially (i.e., the first 
~ 

operates until t=T1 , then the second from t=T
1 

tot= T
1

+T
2 

etc.), the system 

N 
fails at time T =i~lTi. Clearly T is a random variable and its special 

feature is that it is the sum of N independent random variables. The density 

of T can be readily found with the use of the convolution theorem. 

Convolution Theorem. Given two independent continuous random variables 

T
1 

and T2 with density functions f 1(t) and f 2(t) respectively, the density 

function f(t) of their sum T = T
1
+ T2 is the convolution of their densities 

f
1 
(t) and f

2
(2), i.e., 
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Figure 2.26. Standby System. 
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f(t) = f
1
(t) * f 2(t) _ /oo f

1
(x)f2(t-x)dx 

-00 

(2 .115) 

The proof may be found in any probability book.
1

'
2

' 3 

In the case of positive random variables the integral is defined from 0 

to 00 • The convolution theorem from Laplace Transform theory is now invoked, 

i.e., 

(2.116) 

Thus, the LT of the convolution of two functions is simply the product 

of their transforms. 

Returning to the standby system we see that repeated application of the 

convolution theorem yields the LT for the density function of the time-to-

failure of the system as the product of the LT of the failure densities of 

the components, that is, 
N 

f(s) = f1 
i=l 

f. (s) 
l. 

Then the reliability of the system is 

t 

R(t) = 1 - j f(x)dx 
0 

(2.117) 

Let us apply the previous results in the case of N identical exponential 

components, i.e., 

f. (t) -At i=l,2, ••• ,N = Ae 
l. 

- A Then f. (s) = -- and 
l. s+A 

- AN 
(2 .118) f(s) = 

(s+A)N 
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Inverting the transform we get 

-At e (gamma density) 

arid the reliability of the system is 

N-1 

R(t) = e-At I: 
k=O 

(At)k 
kl 

(2.119) 

(2 .120) 

which is the well-known Poisson distribution. The MTTF is readily found to 

be (Equation (2.95)) 

m =- (2 .121) 

Another example involves two components with different failure rates Al 

and A2 . Then 

,.., \A2 
f(s) = (s+A1) (s+A2) 

and 

AlA2 -A t -A t 
f(t) 2 1 = 

\-A2 
(e - e ) 

The reliability is 

-A t -A t 
A1e 2 - A e 1 

R(t) 2 
::: 

A2 A -1 

and the MTTF 

1 +__! m = 
Al A2 

For N dissimilar components the MTTF is 

m = 

N 

E--l 
k=l \: 
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An example which shows how the method presented above may be used in more 

general cases, involves a series system with M identical exponential elements 

for which there are N standby similar units. To find the reliability of the 

system we must determine the failure density of the series system first. 

Since 

-MAt = e 

the failure density is 

dR (t) 
f (t) = __ s-::-e_r __ =MAe-MAt 
ser dt 

With N standby units the system is allowed to fail N times, therefore the LT 

of its failure density is 

hence 

"' ,...., N[MA f(s) = [fser(s)] = s+MA 

f(t) -MAt 
e 

and the reliability of the system is 

R(t) 

N 

= e-MAt E 
k=O 

r (2 .125) 

(2 .126) 

(2.127) 

which is the Poisson distribUtion again with rate of occurrence of events 

MA. The Ml'TF is 

N+l 
m = --MA 

(2 .128) 

124 



2.C.6. Dependent Failures 

All the previous models assumed independent failures, i.e., the failure 

of any element was not influenced by the failures of the other elements. 

There are cases, however, where such independence cannot be assumed. 

In the study of the standby system we assumed that the units on standby 

were immune to failure. It is more realistic to assume that there is a 

finite probability that these units may fail. Consider, for example, one 

operating unit with failure density f
1 
(t) and one standby unit with failure 

density f (t). When the standby element is put on-line its failure density 
s 

changes to f 2(t). The convolution theorem can no longer be used to calculate 

the reliability of the system, because there is no independence of failures 

any more. We could use joint probability densities to attack the 

1 2 3 8 
problem, ' ' ' however, the following method helps to a better understanding 

of the sequence of events. 

The system will perform its task in the interval (O,t) in either of the 

two mutually exclusive ways: 

(i) Unit 1 does not fail in (O,t), or 

(ii) Unit 1 fails in (T,T+dT), where 0 < T < t, unit 2 does not fail 

in (O,T) while on standby and it operates successfully from T to t. 

The probability of the first case is simply the reliability of unit 1, 
t 

i.e., R1(t) = 1- J( f 1(x)dx. The probability of the second case is the 

product of probability of the described events, i.e., 

t f [f/T)dT] • [Rs(T)] [R2(t-T)] 
0 
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where 

and we integrated overT to cover all possibilities ofT in (O,t). 

Therefore, the reliability of the system is 

T 

R(t) = R1(t) + J( f 1(T)Rs(T)R2(t-T)dT 
0 

In the special case of exponential failure laws we have 

and 

therefore 

f (t) 
s 

-A. t 
= A. e 

8 

s 

-A. T 
R (T) = e s 

s 

Rz (t-T) 

-A. t 
R(t) = e 

1 + 1 s 2 
/

t -A. T -A T -A. (t-<r) 
A.

1
e e e dT = 

0 
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If Al = A2 - A (the units have the same on-line failure rates) the reliability 

reduces to 

R(t) -At + 
A [ -At -(A+\) t J 

= e T e - e 
s 

or 

-At [ +l_ -A t J 
R(t) e 1 (1 - e s ) 

A s 
(2 .131) 

Observe that for A - 0 the above expression reduces to s 

R(t) = e -At(l+At) (2.132) 

which is the known result for cold standby (L 1Hospital 1 s rule was used), 

Equation (2,117). 

R(t) 

If A = A the reliability becomes 
s 

-At -2At = 2e - e 

which is the result for a parallel system, Equation (2.109). 

A generalization of the above result is presented in Ref. 67. There is 

a total of M+N identical units of which M are required for successful system 

performance and N are on standby. The failure rate of the on-line units is 

A and of the off-line units is A • Defining for convenience the quantities 
s 

a = Ml_ 
A 

s 

-A t 

s 1 
s = - e 

and 

the reliability of the system is given by the following two equivalent 

expressions 
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R= ~ (n+:-J:)sn(l-8) a 
n='o 

(2 .133) 

N 

R = (2 .134) 
n=O 

Notice that a is not in general an integer. However, the binomial coefficient 

( ~ ) with x noninteger and r a positive integer may be defined as 1 

x(x-l) ••• (x-r+l) 
r! 

or, in terms of gamma functions, 

(n+a-1) = r(n+a) 
n n! f(ci) 

The above distribution is called the Poisson-binomial distribution. 

When A = 0 it reduces to the Poisson distribution (M elements in series and 
s 

Non "cold" standby), while when A -A it reduces to the binomial distribution 
s 

(M-out-of-M+N system) • 

2.C.7. Imperfect Switching 

There are many complexities which may be introduced to make the previous 

models more realistic. The methods presented though, are quite general and 

powerful so that only slight modifications will be needed to account for any 

additional features of the systems. 

As an example, consider a standby system with one unit on-line (failure 

rate A1) and one on standby (on-line failure rate A2 , cold standby). This 

problem was solved in 2.C.S under the assumption of perfect switching and the 

reliability was found to be 
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(2 .122) 

Suppose that there is a constant probability R that the switching will be sw 

carried out properly. If the switch fails the reliability of the system is 

just the reliability of the on-line unit, i.e., 

-Al t 
e 

Then in the presence of an imperfect switch the reliability of the system is 

R(t) 

which yields 

R(t) 

(1-R ) Rf (t) + R R (t) 
swr s sw ps 

-A t 
(e 2 

-A t 
1 

- e ) (2 .135) 

(Observe that the second term in the sum is the increase of reliability due 

to the standby unit.) 

The same result could nave been obtained with the method of 2.C.6. in a 

straightforward manner. In Reference 67 this method is applied to determine 

the reliability of a system consisting of M on-line elements (all required) 

with N standby units. The failure rate of a unit on-line is A and on standby 

is A. The probability of a successful switching is R (constant). Further-s sw 

more, the standby units must be started when they are put on-line and the 

probability of a successful starting of any unit is Rst (initially the M 

on-line units are switched on but they have not been started). Then the 

reliability of the system is 
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where 

and 

min(M,N) 

( :) Q!t R(t) = :E 
k=O 

N-k-n 

( :) Q:tsw 
X :E 

x=O 

~ = M~ 
A. 
s 

Q = 1 - Rst st 

R = R R stsw st sw 

Q - 1- R stsw - stsw 

N-k c:-1) RM-k f3n(l-8) ~ x 
st n=O 

N-x R stsw (2.136) 

Further examples and discussions of redundant systems may be found in 

References 6,7,8,9. 
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2.D. MAINTENANCE MODELS 

2.D.l. Introduction 

The failure distributions and redundant systems which are studied in the 

previous sections attempt to predict the probabilistic aspects of the per-

formance of a system that was built to satisfy a specified requirement. The 

system is put into operation and the reliability function gives the probability 

of successful operation for a given period of time. 

In the present chapter we consider the problems which arise when the 

system is subject to maintenance policies. These may simply consist of 

replacement or repair of failed units (off-schedule maintenance) or of 

regular inspection and repair of redundant units according to a predetermined 

plan (preventive maintenance). 

The first subject to be treated is the off-schedule maintenance. New 

mathematical tools are needed for the study of the problem and they are 

presented in the following sections. 

2.D.2. Renewal Theory 

A detailed exposition of renewal theory can be found in Cox. 68 The 

fundamentals of the theory with applications to reliability engineering are 

also presented in References 5,8,69 and 70. 

A renewal process is defined to be a sequence of independent, non-

negative identically distributed random variables T
1

,T2 ,T
3

, •••• To visualize 

a situation which conforms with this definition, assume that an item is 

placed into operation in a socket. Its failure distribution (which is also 

the distribution of inter-arrival times) is ~(t) and its failure density ¢(t). 

The unit fails at a time t
1 

= T
1 

and it is instantaneously replaced by an 

identical unit, which fails after time T2 , i.e. at time t 2= T1+ T2 , and it 
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is replaced etc. Then the sequence T1 , T2 , ••• forms a renewal process (see 

Fig. 2.27). It is important to notice that the timet is counted from the 

beginning of the process, while the time Ti is the time interval between the 

th th (i-1) and i replacement (inter-arrival time). By definition 

P(Ti ~ t) = ~(t) 

P(t ~ Ti ~ t + dt) = ¢(t)dt 

(when all the inter-arrival times have the same distribution ~(t) the 

process is called an ordinary renewal process; in some cases the first time 

T
1 

has a distribution ~1 (t) which differs from the distribution ~(t) of 

T2 , T
3

, •••• Then we talk about a modified renewal process). 

Having ~(t) we will attempt to make statements about the following 

quantities: 

a) P(T1+T
2
+ ••• +Tn < t): probability that the time of the nth replace­

ment (renewal) is less than t. 

b) N(t): the number of renewals in the interval (O,t) 

c) W(t)=E[N(t)]: the average number of renewals in the interval (O,t) 

(renewal function), and 

d) W(t) =- dWd(tt) •• 1 d i i h . i renewa ens ty w t 1nterpretat on: 

w(t)~t =probability that a renewal occurs in the interval (t, t+~t). 

w(t) is a probability density, like ¢(t), but it sruuld not be confused with 

the latter; ¢(t) concerns the failure of a specific unit which is placed in 

the socket while w(t) refers to any failure (and thus a renewal) occurring 

in the socket. Also the time scales are different; time in ¢(t) is counted 

from the moment the unit is placed into the socket, while time in w(t) is 

counted from the beginning of the renewal process. 
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figure 2.27. A Renewal Process. 
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n 

To calculate the probability that tn "" ~ Ti < t we invoke the con­
i=! . 

volution theorem (see Sec. 2.C.5). For a modified renewal process we define 

the following sequence of convolution integrals: 

<P(l) (t) = <Pl(t) 1 t 

<P(2) (t) = <P(l) (t) *<P(t) = i <P(l)(t-x)<jl(x)dx 
0 

t 
<P ( n) ( t) <P(n-l)*<jl(t) = i (n-1) (2.137) = <P (t-x)<jl(x)dx 

0 
n 

Then <P(n)(t) is the density function of t = ~ Ti. By integrating over t 
n i=l 

we generate a sequence of convolution integrals for the distribution function, 

i.e. 

<I>(l) (t) = <I>l (t) 

t 
<1>(2) (t) = <I>(l) ( t) *<I>( t) :::::: L <I>(l)(t-x)<jl(x)dx 

t 
<I>(n) (t) = q,Cn-1) *<I>(t) = J[ <I>(n-l)(t-x)<jl(x)dx (2 .138) 

0 

Then 

In the Laplace transform domain the expression for the density takes on a 

simple form; defining 

co 

g(s) = f e-st g(t) dt 
0 

we use the convolution theorem for Laplace Transforms to get 

'$(n) (s) = 4i' (s) [~(s)] n-1 
1 
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Of course, for an ordinary renewal process we replace ~1 (t) with ~(t) and the 

results become simpler. 

The distribution of the number of renewals N(t) is readily found from 

the previous results. Since the event N(t) = n is identical with the event 

P[N(t) n] = ~(n)(t)- ~(n+l)(t) (2.14Q) 

This result enables us to derive an equation for the renewal function W(t). 

By definition 

00 

W(t) = n[~(n)(t) - ~(n+l)(t)] = 
n=O 

00 

= ~ ~(n) (t) 
n=l 

00 t 

= ~l(t) + L: fo (n-1) 
~ (t-x)~(x)dx 

n=2 

t 00 

( 2: ~ (n) ( t-x) ~(x) dx = 
Jo n=l 

t L W ( t-x) ~(x) dx 

Therefore, we have the two equations 
t 

W(t) = <I>1(t) + i W(t-x)«x) dx 
0 

and, by differentiating, 

w(t) = dW = ~ (t) + 
dt 1 

t i w(t-x) ~(x) dx 
0 

= 

(2.141) 

(2.142) 

which are of the same form (renewal equation). We can interpret the terms of 

the equation as follows: w(t)~t is the probability that a failure (and thus 
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a renewal) occurs in the socket in the interval (t,t+~t). This event can 

occur in either of two mutually exclusive ways: a) the first unit that was 

placed in the socket fails in (t,t+~t), or b) a renewal took place at (t-x), 

0 < x < t, and the unit that was placed in the socket than fails at (t,t+~t). 

These two events have probabilities equal to the first and second term of the 

right side of the renewal equation respectively. 

To solve the renewal equation we use Laplace transforms and get 

w(s) 
¢'1Cs) 

(2.143) = -1 - <f>(s) 

and _, 
"' 

W(s) 
<Pl(s) </>l(s) 

(2.144) 
"' 1 -</>(s) s[l-<f>(s)] 

The solution may be obtained in closed form only in special cases. In 

the important case where the inter-arrival times are exponentially distributed, 

i.e. , 

inversion of Equations (2.143) and (2.144) yields 

w(t) = A (2 .145) 

W(t) = At (2.146) 

which is expected, since the exponential model has n0 nn,amory". Furthermore, 

the density function for t is the convolution of n exponentials, thus 
n 

( ) 1 n n-1 -At 
,r.. n (t) 1\ t ( d · t ) ~ = (n-l)! e gamma ens1 y 

and 

<P(n) (t) = 1 - e-At [1 + At + ••• + (At)n-1 ] 
(n-1) ! ' 
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The probability of exactly n renewals in (O,t) is 

P[N(t) = n] = ~(n)(t) - ~(n+l)(t) = (At)n~ 
n! 

-At e 

(Poisson distribution). (2.148) 

Solutions in closed form can also be obtained for the more general gamma 

distribution, i.e., 

= cp(t) = 

In this case 

r-1 

P[N(t) = n] = ~ 
i=O 

r-1 

W(t) = lE_ +..!. 
r r ~ 

k=l 

(.\t)nr+i 
(nr+i) I 

where 21Ti e = exp(r-)' 
2 

i = - 1 

-.\t 
e 

r = 1,2, ••• 

A > 0 

(2.149) 

(2.150) 

In Reference 71 the renewal function is calculated in series form when 

the inter-arrival times are Weibull distributed• This solution was used in 

Reference 72 to derive graphs of the renewal density and function as functions 

of time for special values of the parameters of the Weibull distribution. 

The previous results give the quantities of interest as functions of 

time. An asymptotic result is also of importance, namely 

lim w(t) = 
t + 00 

lim W(t) = ..!. 
t + oo t m 

(2 .151) 

where m is the mean of ~(t). This means that if the units are replaced as 

they fail, then the probability of a failure occurring at any time (t,t+~t) 

tends to a constant which is equal to the reciprocal MTTF of the unit (thus 
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in the modified process, the distribution ¢1(t) does not affect the asymptotic 

behavior). The asymptotic value is reached after several MTTF's. 

Observe that when ¢
1
(t) = ¢(t) = Ae-At we have 

w(t) 1 =A=­m for all t, (2.152) 

that is, the asymptotic value is the exact solution. Of course, the hazard 

function is also h(t) = A. This coincidence of numerical values has led to 

some confusion in the past and the renewal density has been treated as a 

renewal rate similar to the failure rate, This cannot be done, since the 

concepts are completely different: h~t is a conditional probability while 

w~t is a probability density, 

2.D.3. Repair of a Single Unit 

Renewal theory can be used directly in the study of failure and repair 

of components. Instead of replacements of units by new ones, we assume that 

when the component fails it undergoes repair which restores it to an "as-

good-as-new" status. As renewal points we consider the times at which the 

unit enters the operating state either as new or after the completion. of a 

repair. The inter-arrival times T
1

,T2 , ••• are the sums of two independent 

random variables: the time of operation of the unit (or, the time spent in 

state 0) T~ and the time it takes for the repair to be completed assuming it 
~ 

1 starts immediately after failure (or, the time sper~ in state 1) T4 , i.e, 

T. = T~ + T~ 
~ ~ ~ 

(2.153) 

If the failure den~ity is f(t) and the repair density g(t) the convolution 

theorem (Equation (2,115)) gives the density of inter-arrival times as 
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t 

¢(t) = f(t) * g(t) = J[ f(t-x)g(x)dx (2.154) 

or, in the Laplace transform domain, 

cp(x) "' "' = f(s) g(s) (2.155) 

The renewal density w (t) then satisfies the renewal equation (ordinary 
r 

renewal process, since at the beginning of the process the unit was new) 

t 

wr(t) = ¢(t) + J[ wr(t-x)¢(x)dx 
0 

and, in terms of Laplace Transforms, 

';; (s) 
r 

= {j)(s) 

1-¢' (s) 

f(s)g(s) 

1-f(s)g(s) 

The expected number of repairs in (O,t) is then 

t 

with LT 

w (t) 
r i w/x)dx 

0 

- fcs)g(s) w ( s) = -~:.!-lii-~;__-
r s [1-fcs)g(s)] 

(2.156) 

(2.157) 

(2.158) 

(2.159) 

In a similar manner we can calculate the probability of a failure in 

(t,t+6t) and the expected number of failures in (O,t). Now the renewal points 
.. 

are defined to be the points in time where the units fail. The inter-arrival 

times are again distributed according to ¢(t) but now the process is a modified 

one; indeed, the unit starts as good as new and it fails at time T1 which is 

distributed according to ¢1(t) = f(t) (the failure density of the unit). Thus, 

the renewal density wf(t) satisfies the equation 

t 

wf(t) = f(t) + J[ wf(t-x)¢(x)dx 
0 
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hence 

"" 
~ f(s) wf(s) = __ ...:.;;...._ __ 

1-f(s)g(s) 

The average number of failures in (O,t) is 

t 

Wf(t) = J[ wf(x)dx 
0 

and its transform 

f(s) 

s [1-f(s)g(s)] 

( 2 .161) 

(2.162) 

(2.163) 

Using the convolution form of ¢(t) we can write the renewal equation as 

t 

wf(t) = f(t) + J[ wf(x)¢(t-x)dx 
0 

t-x 

r g(t-x-T)f(T)dT Jo (2 .164) 

The interpretation of this equation is as follows: a failure occurs in 

(t,t+6t) with probability wf(t)6t which consists of the probabilities of two 

mutually exclusive events: the event that the unit fails for the first time 

in (t,t+6t) and the event that the unit failed in (x,x+~x), was repaired T 

units of time later and it fails again in (t,t+6t), These two probabilities 

are the two terms on the right side of the equation. 

The most important quantity in safety analysis 4 • .s the availability p(t) 

of the unit, which is defined as the probability that it is functioning at 

time t, Its complement is called the unavailability of the unit and they are 

related by 

p ( t) + q ( t) = 1 (2.165) 

140 

) 

l i 



I. 

The initial condition is 

p(O) = 1 (and, as a result, q(O) = 0) • 

An integral equation can be written for p(t) as follows: 

t 

p(t) = 1- F(t) + J( wr(x) [1-F(t-x)]dx 
0 

(2 .166) 

(2.167) 

and the interpretation is as usual (the first term on the right side is the 

probability of no failure in (O,t) and the second term is the probability of 

* a repair at x and no failure from x tot). 

Taking Laplace transforms we get 

p(s) 
1-f('s) (2 .168) - ....., s [1-f(s) g(s)] 

It is shown in Barlow and Proschan5 that the availability can also be 

calculated from 

p(t) (2.169) 

Several asymptotic expressions find extensive use in applications. To 

find them we use the final value theorem of Laplace transform theory which 

states that 

* Note: If F(t) -At 1 - e and we multiply the equation by A the following 
equation results 

Ap(t) = Ae-At + 

t 

( w (x) Ae-A(t-x)dx 
Jo r 

It is easy to see that the right side is just the probability of a failure 
in (t,t+6t) (divided by 6t) which is Wf• Therefore we have derived the 
relation 

wf(t) = A.p(t) = 1..[1-q(t)] (2.170) 

which is the same as Equation (12) in W. Vesely's paper, "A Time-Dependent 
Methodology for Fault Tree Evaluation," Nucl. Eng. and Design 13 (1970) 337-360. 
However, it holds only for constant failure rate and not in general; in addition, 
A is a failure rate as conventionally defined and not as defined in the 
mentioned paper). 
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lim p(t) =lim [sp(s)] (2 .171) 
t+oo s+O 

Furthermore, for small values of s, Equations (2.94) and (2.95) lead to 

,..., 
f(s) ~ 1 - ms (2.172) 

and 

g(s) e:1 1 - 'Ts (2.173) 

where m is the mean of f(x) (called conventionally mean time between failures, 

MTBF) and 'T is the mean time to repair, i.e •. , 

00 

'T - J[ t g(t)dt = MTTR 
0 

The asymptotic availability is then 

p = lim [ 1 - (1-ms) l = 
00 s + 0 1-(1-ms) (1-'Ts~ 

m 
m+'T 

(2.174) 

(2.175) 

Similarly, the asymptotic failure and repair renewal densities are 

1 
(2.176) w = w == f,oo r,oo ~ 

Applications 

1. Exponential failure and exponential repair 

Here f(t) = Ae-At and g(t) = ~e-~t and their Laplace transforms are 
,..., 
f(s) = A/s+A and g(s) = ~Is+~ • Simple calculations ;ield 

Pet} = __}:!_ + -L. -0.+~} t 
~A WA e 

(2 .177) 

p = .....1:L 
oo WA 

(2.178) 

- 2.g A2 
wf(t) - A+~ + A+~ e -(A+~)t (2.179) 
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e -(A+ll) t 
(2.180) 

w = w f,oo r,oo 
(2.181) 

The asymptotic results are reached after ~ 3/A+ll units of time. 

2. Exponential failure and fixed repair time 

f(t) = Ae-At and g(t) = o(t--r) 

where T is the constant time it takes for a repair to be completed, and o(t-T) 

is the Dirac delta function. 

hence 

The Laplace transforms are 

f(s) - A 
- s+A and 

p(s) = __ 1 __ 

s+A-Ae -sT 
= 

g(s) -sT = e 

1 = ------~~------~r-
(s+A) [1 - _A_ e -sTJ 

s+A 

= 

= _1 £ (-LJne-nsT 
s+A n=O s+A 

(2.182) 

The inverse transform is expressed in terms of the unit step function 

U(t-nT) as follows 

00 

=I: n n 
e-A(t-nT)U(t-nT) p(t) A (t-nT) 

n! n=O 
(2.183) 

where 

1: 
if t > nT 

U(t-nT) = 
if t < nT 

(2.184) 
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The availability as a function of time is shown in Figure 2.28. In the 

first two time-intervals the availability is 

-At = e 0 < t < '[ (reliability) pl (t) 

p2(t) = e-At + A(t-T)e-A(t-T)' T < t < 2T 

etc. 

The maximum value occurs in the second interval at 

and it is 

t =T+-..;...,..-­max 

Pmax 

-AT -(1-e ) 
e 

The asumptotic availability is 

and it is reached after - 3T • 

The LT for the failure renewal density is 

"Wf(s) = __ .:..;.A __ 
s+A-Ae -sT 

and inverting as before, or using Equation (2.170), we get 

For the repair renewal density we have 

/..e-sT w (s) = __.:...;.::__ __ 
r s+A-Ae-sT 
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p(t) 

1 

Poo 

0 

1/1+Xr 

2r 3r 

Figure 2.28. Availability as a Function of Time 
(Exponential Failure Distribution F(t) = 1-e·At 
and Constant Repair TimeT). 
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therefore 

w (t) = Ap(t-T) 
r 

= 0 

The asymptotic expressions are 

A 
wf,oo = wr,oo = l+AT 

t > T 

T < 0 

3. Exponential failure and gamma repair distribution 

(2 .187) 

(2.188) 

The description of repair by the gamma distribution is more realistic. 73 , 74 

Here we assume that 

thus 

g(t) 
-jlt 

e 

2 
g( s) = ___,}.1;;;,_......-::-

(s+jl) 2 

To find the availability we have 

p(s) = 
2 

(s+J.I) (2 .189) 

The time-dependent availability may be found by inverting p(s); this leads to 

expressions involving hyperbolic functions (with the condition that A > 4Jl; 

if A < .4Jl trigonometric functions are used) which are quite complicated and 

of little use. The asymptotic availability though .is readily found to be 

Furthermore 

lim 
s + 0 

s p(s) = _Jl_ 
).1+2A 

w = w = f,oo r,oo 
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The time-dependent part of p(t) decays as e-(}J+A/ 2)t, therefore the 

3 asymptotic expressions can be used after"' }J+A/2 units of time. 

4. Gamma failure and repair distributions 

Now we have 

f(t) A2t -At and g(t) it 
-}Jt 

:::: e = e 

thus 
A2 2 

~ 

g(s) Jl f(s) = and = 
(s+A) 2 (s+}J) 2 

Then 

p(s) = 
(s+2A) (s+Jl) 2 

The asymptotic availability is 

and 

p _..J:!_ 
oo - A+l.l 

The failure renewal density is given by 

2 2 
,..., ( ) _ A (s+].l) 
wf s - 2 

s(s+A+l.l) [s +(A+}J)s+2Al.l] 

w = f ,oo 

Since the failure rate of the gamma density is 

and lim A(t) = A 
t+oo 

it is clear that the relation (Equation (2.170)) 

147 

.,. 

(2.192) 

(2.193) 

(2.194) 

(2.195) 

(2.196) 



does not hold here, as expected, since the failure distribution is not 

exponential. 

A quantity which can serve as a measure of the performance of the unit is 

the downtime D(t) (References 5,75). It is defined as the total time the unit 

spends under repair in an interval (O,t). Similarly we can define the uptime 

U(t), which is the total time the units spends in the operating state. 

Therefore 

D(t) + U(t)· = t (2 .19 7) 

The distribution of D(t) is given by complicated expressions and can be 

found in the references. However, the following asymptotic result is of 

interest 

lim P [ D ( t) - ~ t S x l = N ( x) -

t + 00 v~2 
aD t . 

where 

r 
~ = m+r 

2 2 2 2 
r crf + m crr 

(r+m) 3 

1 

TzTI 

X 

f-ro 
2 -u /2 

e du (2.198) 

(2.199) 

(2.200) 

2 ,..,.2 and crf and vr are the variances of the failure and repair distributions 

respectively. In words, the above result states that for large t the downtime 

is normally distributed with mean the asymptotic un~·,ailability times the 

time interval and variance cr~ • Notice that we only need to know the mean and 

the variance of the failure and repair distributions. 

Finally, another quantity which also can serve as a measure of unit per­

formance is the excess time. 76 , 77 It is defined as the total time B(T) that 

the unit is under repair corresponding to T operating units of time. Thus the 
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difference between D(t) and B(T) is in the argument: t is the real time while 

T is the time spent in state 0 only. Clearly 

t = T + B(T) (2. 201) 

The asymptotic behavior of B(T) is 

lim 
p r(T) -...,, 

s; x] "' N(x) 
t + 00 yo;;; (2.202) 

where 

r 
~ = m (2.203) 

and 

2 a = 
D 

(2. 204) 

2.D.4. Multiple-State Systems. Markov Approach 

The preceding analysis referred to a single unit which could only be in 

two mutually exclusive states 0 (up) and 1 (down). For any failure and repair 

distributions we estimated the availability and other quantities of interest 

using renewal theory; this approach was possible because the regeneration 

points of the renewal process were readily identified. 

Unfortunately this elegant method cannot be applied to more general situ-

ations, where the system may be in more than two states (e.g. units in series, 

parallel etc.). It is very difficult, if at all possible, to find the 

regeneration points. The use of Markov and Semi-Markov models makes it possible 

to obtain useful results in these cases. 

The study begins with the identification of all the mutually exclusive 

states of the system. To make the discussion more concrete we will use as an 

example a system consisting of two units. We do not specify for the moment, 
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how they are logically interconnected. In addition there is one repair 

facility which restores a failed unit to an as-good-as-new status. The 

possible states of the system are the following: 

0: both units are up 

1: unit 1 is down and under repair, unit 2 is up 

2: unit 2 is down and under repair, unit 1 is up 

3: both units are down, unit 1 is under repair 

4: both units are down, unit 2 is under repair . 
These mutually exclusive states exhaust all possibilities. Observe that 

if two repair facilities were available, states 3 and 4 would be replaced by a 

single state: both units down and under repair. 

The probability that the system will be in state i at time t is denoted 

as Pi(t). To be able to write a system of equations relating these probabilities 

we define the transition probabilities as follows: the probability that the 

system will be in state j at t+6t given that it is in state i at t is aij6t. 

The rates aii are defined as aii = - ~ aij and (l-aii)6t is the conditional 

probability that if the system is in state i at time t it will remain in that 

state in the next interval 6t. All the transition rates are assumed independent 

of time, 

We can now write an equation for the change of P (t) in 6t, i.e., 
0 

0,1,2, ••• 

The first term on the right side is the probability that the system will 

remain in state 0, the second and third terms are the probabilities that a 

repair is completed in 6t on unit 1 or unit 2. These are the only terms which 

are of first order in 6t, terms of higher order are included in O(~t) (e.g. 
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transition from 0 to 3 or 4 requires the simultaneous failure of both units in 

~t, the probability of which is of order (~t) 2 ). 

Dividing by ~t and letting ~t + 0 yields 

dP (t) 

d~ = -(aOl+ a02) Po(t) + alO Pl(t) + a20P2(t) 

Similarly we derive the equations 

dP l (t) 
aOl Po(t) - (alO + al3) Pl(t) + a41 P4(t) dt 

dP 2(t) 
a02 Po(t) - (a20 + a24) P2(t) + a32 P3(t) = dt 

dP 
3
(t) 

al3 Pl(t) - a32 P3(t) = dt 

dP 4 (t) 
a24 P2(t) - a41 P4(t) = dt (2. 205) 

Figure 2.29 shows graphically the states and the transition rates. 

The system can be written in compact form by defining the row vector 

(2. 206) 

and the matrix 

-(aOl+ a02) aOl a02 0 0 

alO -(alO+ a13) 0 al3 0 

A - a20 0 -(a20+ a24) 0 

0 0 a32 -a32 0 

0 a41 0 0 

(2. 207) 
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Figure 2.29. States and Transition R~t~s for a System With 
Two Dissimilar Units and One Repairman. 
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then we have 

~(t) 

dt = ~(t) A (2.208) 

and if some initial conditions ~(0) are specified the system admits a unique 

solution. 

The stochastic process ~(t) has a very important feature, namely, it 

suffices to know one value of ~(t) at a certain time (e.g. ~(0)) to determine 

completely the future (and past) behavior of the process. This is a direct 

consequence of the assumed constancy in time of the transition matrix A. The 

future depends only on the present and not on the history of the system (i.e. 

there is no memory). It is clear that such a model can be applied if and 

only if the failure and repair distributions are exponential, since this is the 

only distribution with lack of memory. The process we described is called 

1 3 70 81 Markov and has been studied extensively. ' ' ' The theory and its application 

to reliability problems is presented in References 5 and 8 and the book by 

Sandler78 is devoted exclusively to the Markov approach of reliability problems. 

The system of differential equations (2,208) describes the general two-

unit system with one repairman available. Knowledge of the logical intercon-

nection of the units permits us to calculate the elements of the transition 

matrix A and to proceed to estimate various reliability quantities. Thus we 

distinguish the following cases: 

Series system 

We assume that the failure rates of the units are Al and A2 and the repair 

rate is ~. A further assumption is that the units work independently and 

failure of one does not affect the performance of the other. Such a case 

arises, for instance, when two engines are connected in series and when one 
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fails the other continues to work. The situation is different, however, if 

two resistors are connected in series, then failure of one interrupts the cur-

rent, therefore the other cannot fail. In this case states 3 and 4 are 

impossible. Then it is easy to see that 

Since both units are required for the system to function, the only accept-

able state is state 0, Therefore, the availability of the system is 

p(t) = p (t) 
0 

Parallel system 

Now only one unit is needed for successful system performance, therefore 

the availability is 

Standby system 

Unit 2 is initially on standby with zero failure rate and A
2 

on-line 

failure rate. In this case we must also re-examine the definition of the 

states. We assume that if both units are up it is unit J that is always on 

line (all the switchings are instantaneous). If this is not the ca~e, state 0 

should be split into two other states: unit 1 on-line, unit 2 on standby and 

unit 2 on-line, unit 1 on standby. Except for this nothing essential changes. 

We always assume that the standby unit cannot fail. 
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Then the transition rates are 

8
01 a24 Al 

a02 = 0 

8
13 A2 

8
10 a20 a32 a41 ~· 

The system is up if either or both units are up, therefore its availability is 

de~ermined by 

These three examples illustrate how the method is adjusted to cover the 

special features of a particular problem. The logical interconnection of the 

units which comprise the system determines the elements of the transition 

matrix in terms of the failure and repair rates and which states are the 

working states of the system so that the availability function can be calculated. 

A drawback of the Markov model in applications is the large number of 

states that even a simple system can have. A great reduction in the number of 

states occurs, however, if all the units are identical. The two-unit system 

with one repairman can be in one of the following three states: 

0: both units up 

1: one unit up and one under repair 

2: one unit down and the other under repair • 

(The number of states is reduced by two in this example, but the reduction is 

must greater in more complex systems,) 

The transition rate matrix A has the following form when the elements are 

in series or parallel 
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2;\ 

-( A+JJ) 

jJ 

(2.209) 

with working state for the series system the state 0 and for the parallel 

system states 0 and 1. The graph is shown in Figure 2.30. 

For the standby system the transition rate matrix is 

A (2.210) 

and again the working states are 0 and 1. 

Thus far the analysis concerned the estimation of the availability function. 

In many cases it is desirable to have expressions for the reliability of the 

system, its mean time to failure (MTTF) and the mean up (or down) time MUT. In 

the case of a single unit with repair the reliability and MTFF were not affected 

by the repair process, for redundant systems however they are improved. In 

general the reliability is less than or equal to the availability, 

In order to calculate the above quantities a further discussion of the 

states of the system is necessary. A characteristic of the Markov model with 

the previously defined transition rate matrix A was that the system could 

visit and leave all the states or, in other words, in whatever state the system 

was initially, it would visit all other states af~er a finite time. These 

states are said to communicate. If a state cannot be left once it is entered 

it is called an absorbing state. The state i is absorbing if and only if 

a .. = - 2: a .. = 0. In our example if there were no repair, states 3 and 4 
11 j:fi ~J 

would be identical (both units down) and absorbing. Furthermore the states 

would not co~unicate anymore since it would be possible to go from 0 to 1 to 

2 to 3 (or 4) but not back, i.e. states 0,1 and 2 cannot be re-entered once 

left. 
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0 2}1. 1 2 

Figure 2.30. States and Transition Rates for a System With Two Identical 
Units in Series or Parallel and One Repairman. 
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For each logical interconnection of the units we have identified the 

working states and the failed states. Assuming that initially the system starts 

in a working state its reliability at time t is the probability that none of 

the failed states has been entered. This suggests that we change the failed 

states into absorbing ones and then calculate the probability that the system 

is in one of the working states. This probability is the system reliability, 

since we are sure that the system cannot leave the failed states. For example, 

consider the system of two identical units with one on standby. The unaccept-

able state is 2, therefore the transition rate matrix is modified to be 

A" (:-(A:~) D 
and the system reliability is 

R(t) P
0 

(t) + p 1 (t) . 
The MTFF is given by 

00 

MTFF = J R(t) dt 
0 

2.D.5. Solution of the Markov System 

The solution of the system 

df(t) 

dt = !(t)A 

R_(O) = C ( t c. = 1) 
i=O 1 

(2.211) 

(2. 212) 

is discussed in many textbooks. A detailed exposition of the various methods 

can be found in Reference 79. The solution can be obtained by taking Laplace 

transforms, i.e. 
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hence 

s :[(s) - .£ = f(s)A 

-1 
E,(s) = _£(si-A) (2 0 213) 

where I is the matrix with unities in the diagonal and all other elements zero. 

The Laplace transform variable s must not be equal to any of the (possibly 

multiple) eigenvalues wi of A for the inverse matrix to exist. The inverse is 

of the fo:rnt 

(si-A) -l = B(s) 
-1 

det(sl-A) 
(2.214) 

where det :: determinant and B(s) is a matrix wh,ose elements are polynomials in 

s of degree at most (n). The inverse Laplace transform may be found by 

any of the standard methods (e.g. using tables, partial fraction expansions, 

etc.). 
k 

( ~mi 
1=1 

If there are k distinct eigenvalues of A with multiplicities m. 
1 

= n+l) the inverse transform will be of the form 

k 

E.<t> = .£ 2.: 
i=l 

m -1 
i r; 

j=O 

where Yij are constant matrices. Once the probability vector f(t) has been 

obtained the availability function will be the sum of the components of f(t) 

corresponding to the working states of the system. We can write an expression 

for the availability by defining a (n+l)-dimensional vector V whose ith element is 

unity or zero depending on whether the ith state is acceptable or not. Then 

the availability is 
n 

p(t) =L Pi(t)'Vi- <P(t), V> 
i=O 
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It is clear that the eigenvalues of A play an important role. Due to its 

structure (i.e., 
n 

> 0) special a = - E aij and a .. the following proper-
ii j;'i 1] 

j=O 

ties of the eigenvalues can be proven: 

i. Zero is always an eigenvalue and the corresponding eigenvector has 

non-negative elements. 

ii. All other eigenvalues have negative real parts. 

From these properties it follows that a steady state solution to the 

system always exists. If there are no absorbing states, the asymptotic solu-

tion is found from 

II A 0 

n (2.216) 

L: 
i=O 

and it is independent of the initial vector C. 

The elements IIi of the vector II can be expressed in terms of the determinants 

of A using Cramer's rule. Define D. to be the determinant of the matrix 
]_ 

formed by striking out the ith row and the ith column of -A, then it is easily 

seen that 

II. 
]_ 

D. 
]_ 

If there are k transient and n+l-k absorbing states we write A as 

A-- (Aol Ao2) 

(2.217) 

(2. 218) 

where A
1 

is a kXk matrix consisting of the transient states. We also split the 

probability vector ~(t) into two parts 
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R_(t) = ~'fa) (2.219) 

where 

The steady state solution for R_t is .!!.t = .Q., that is, the system will enter the 

absorbing states and will stay there regardless of the initial conditions. 

We now turn our attention to the est~mation of reliability and various 

mean times of interest (in addition to the listed references see also Reference 

80). As indicated in the previous section all the failed states are converted 

into absorbing ones and the working states are lumped in A
1

• (Equation (2.218)) 

The initial probability vector is also written as f = (ft, ~) where 

~t = (c0 ,c1 , ••. ,ck-l) and fa= (Ck, ••• ,cn). We assume that the system is in 

one of the working states at time zero, i.e. 

k-1 

L": ci 1 
i=O 

and, as a result, c1 = O, i = k, k+l, ••• n. The original system is now written 

as 

dR_t (t) 
= P (t)A1 dt -t 

dP (t) -a = P (t)A2 dt -t 
(2.220) 

P (O) = ft -t 

p (0) = 0 -a 
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As before the solution is in the Laplace Transform plane 

- -1 
~(s) = ft(si-A1) (2.221) 

s!a(s) = ftCsi-A1)-
1
A2 (2.222) 

Defining a k-dimensional vector ~k whose elements are unities we have for the 

reliability 

R(t) = ~ (t), ~ > (2.223) 

which expresses the fact that the reliability is the sum of the probabilities 

that the system is in any one of the working states. Since P (s) is the LT of 
-a 

the probability vector for the failed states, sP (s) is its derivative, there­-a 

fore the failure density of the system is 

f(s) = < sP (s), w +l k > -a -n -
(2.224) 

and using the fact that the row sums of A are zero, i.e. A1~+ A~+l-k = Q, we 

derive the expression 

f(s) (2.225) 

Of course, the reliability may also be found from 

t 

R(t) = 1 - f f(t)dt 
0 

The MTTF can be determined from 

MTTF = Joo R(t) dt 
0 

or, from (Equation (2.95)) 
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MrTF (2.226) 

-1 
which leads to interpreting the elements of (-A1) , say mij' as the expected 

time that the system spends in the jth state before absorption if it starts in 

the ith state. The previous formula shows that these times are weighted by 

the probabilities of starting in any of the working states and then they are 

summed. The mean times mij can be determined in terms of determinants of -A1• 

Thus we define Mij to be the determinant of the matrix resulting from striking 

out the ith row and jth column of -A1 and we have 

(-1) i+j M. i 
J m .. 

1] 
(2.227) 

If state 0 is when all the units are up, we define the system MrFF (mean-time-

to-first-failure) as the average time th.e system will spend in the working 

states before failure. In terms of the previous quantities 

k-1 

MrFF = L: 
j=O 

m . 
OJ 

(2.228) 

The matrix formulation presented here is a useful description of the 

Markov model, however it should not be implied that every Markov system must 

be solved in this manner. Very often the system of equations is simple enough 

(three or four equations) to allow direct solution without reducing it to matrix 

form. The matrix approach will be particularly useful in handling systems with 

many states. 

Applications 

We present here several applications involving identical units; this case 

is important in practice and many such problems are treated in Sandler. 78 The 
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treatment of the problem as a birth-and-death process is presented in Barlow 

and Proschan. 5 

Standby System 

We solve the two-unit S:fStem completely to sh.ow an application of the 

previous results. The states of the system are 

0: both units up, one on-line, one on standby 

1: one unit on-line, one under repair 

2: both down and one under repair (i.e., there is only one repairman). 

The matrix A is 

0 1 2 + states 
~ 

c: 
A 

-~) 
0 

A= 
-(A+~) 1 

~ 2 

We assume that initially both units are up, i.e • 

.9. = (1 ,o ,0) 

First we find (si-A)-1 : 

s+A -A 
-1 

s+A+~ (si-A) = -~ 

0 -~ 

2 2 
s +s(2A+~)+~ (s+~) A 

= (s+A) (s+~) 

(s+A) ~ 
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-1 
0 

-A 

s+~ 

A-:: 

(s+A) A 

s 2+s(2A+~)+A 2 

(2.210) 

X --::-~1~---:-~ 
det(si-A) 

(2.229) 



and 

where 

w1 = -(A+~) ~ 

w2 -(A+~) + ~ 

(0, w1 , and w2 are the eigenvalues of A). 

The Laplace transform of the probability vector is then, from Equations 

(2.213) and (2.229), 

2 1 
(s+~)A, A) x det(si-A) 

The transform of the availability is 

but it is easier to work with the unavailability 

hence 

q(t) (2.230) 

The steady-state unavailability is then 

A2 
II3 <loo= = 

A2+A~+~2 
(2. 231) 

hence 

2 
p = !:! +A];! = Ill + II2 00 A2+A~~2 (2. 232) 

165 



To find the reliability of the system we convert the failed state 2 into 

an absorbing state and we have, (Equation (2.218)), 

Again we determine the inverse matrix 

where 

and 

(sl -A )-l 
1 (:: )

-1 
-I. 

s+/.+}.1 

c+:+~ s:A) x 

2 2 
s + s(ZA+ll) + !. 

2 
< 0 

2 
< 0 

1 
det (si-A1) 

Then the probability vector of the working states is given by Equation (2.221), 

i.e. 

p (s) 
-t 

(s+H}.l,A) x 

thus the transform of the reliability is 

R(s) s+2A+ll 
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hence 

R(t) 

For the mean times of failure we have 

1 
A2 

The }ITFF is calculated using Equation (2.228), i.e. 

illFF 

(2. 233) 

(2.234) 

which is this problem coincides with the illTF because the system was initially 

in state 0. If it starts in state 1 (i.e. C = (0,1,0)) its MTTF is 

Consider now a more general system with n identical units of which n-1 are 

on standby and one repairman. The matrix A is (the number of each state indicates 

the number of units which are down) 

0 1 2 3 .... (n-1) (n) + states 
+ 

-A A 0 0 0 0 0 

)1 -( A+)l) A 0 .... 0 0 1 

A= 
0 -(/..+)1) A 0 0 2 (2.235) )1 .... 

0 0 0 0 .... n 
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The asymptotic availability is 
-1 

1 - rrn • 1 - [ tu ( ~ ) i ] (2.236) 

For n=l we get 

p 
00 

which is the result we have found for a single unit (Equation (2.178)). For 

n=2 we find the expression for the two-unit system, Equation (2.232). 

and 

The MTFF is 

n-1 i 

MTFF = i L 
i=O 

n! (! ) (i+l) (n-i-1)! 

If the number of repairmen is n the corresponding expressions are 

n-1 

MTFF = ~ I: 
i=O 

(1+11/lt) i 
i+l 

(2.237) 

(2.238) 

(2. 239) 

Simple expressions for th.e reliability function cannot be found and in a 

particular problem the technique with the absorbing states may be employed. In 

the present case of identical units (for which matr~x A is tridiagon~l) the 

method has been systematized with the introduction of polynomials with special 

82 5 properties. ' However, the algebra is quite involved. 

Parallel System 

lfuen the number of units is equal to the number of the repairmen the 

availability function can be found using the binomial distribution without 
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solving the Markov model. This iQ justified by the fact that each unit functions 

and is repaired independent of the others. The steady-state availability and 

unavailability for each unit are ~/~A and A/~+A respectively. Therefore, for 

a system with n units where m are needed the steady-state a~ailability is 

(2.240) 

If, however, the number of repairmen is less than the number of units, the 

performance of each unit is not independent of the others. Assume, for example, 

that only one repairman is available. The solution of the Markov system yields 

the following simple expressions for the asymptotic probabilities of the 

system being in the various states (the number of each state again indicates 

how many units are down) 

1 
TI II 

(2. 241) 

n 
(2.242) 

Thus if at least m units are needed for successful operation the asymptotic 

availability of the system will be 

n-m 

l: (2 .243) 
i=O 

2.D.6. Non-Markovian Systems 

A basic assumption in Markov processes is the constancy of the transition 

rates. In the framework of failure and repair of equipments a Markov model 

can be used only if the failure and repair distributions are exponential, since 

this is the only distribution in which the past does not affect the future, 

169 



that is, the resulting transition rates are independent of time. Therefore, 

in the important cases in applications, where the equipments age or the repair 

is not exponential, other methods of attacking the problem must be used. We 

will focus our attention upon the problem of exponential failure but arbitrary 

repair, which arises more often in practice. 

The general problem can be treated as a Semi-Markov process, as we will 

see later. There are situations, however, where it can be formulated as a 

Markov process with the introduction of artificial ( 11 dummy") states, so that 

all the transitions among states occur at a constant rate. A typical example 

useful in applications is when the failure is exponential and the repair is 

described by the gamma distribution 

-)lt -)lt 
G(t) = 1 - e - )lte 

with density 

g(t) l te-)lt 

But we know that the gamma density is the convolution of exponential densities 

and in the present case 

This property suggests that the time-to-repair can be thought of as the sum of 

two independent random variables each exponentially d-istributed with the same 

hazard function )1. Therefore the repair process can be considered as performed 

in two identical stages. If there is only one unit we define the following 

states: 

0: the unit is up 

1: the unit is in the last stage of repair 

2: the unit is in the first stage of repair. 
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The system of equations in (see also Figure 2.31) 

A.Po 

thus 

A = 

- lJP 2 

0 

-;>.. 

ll 

0 

1 2 

0 

ll 

+ states 

+ 
0 

1 

2 

(2. 244) 

This system along with some initial conditions can be solved as before. The 

steady-state availability is 

rr = __!:!_ 
0 ]..1+2;\ 

(2.245) 

It is clear that the technique can also be used when the failure distribution 

is gamma distributed and for redundant configurations. 

2 More generally, if only the meanT and the variance a of the time-to-

repair is known, this method of exponential stages can be used to render the 

system amenable to Markovian treatment (Reference 83 and, for an application 

to reliability problems, Reference 84). The coefficient of variation is 

defined as 

a v=­
T 

(2. 246) 
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0 1 

Figure 2.31. States and Transition Rates for One Unit With Exponentially 
Distributed Failure and Gamma Distributed Repair. 
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If v < 1 the repair process is modeled as a series of k successive identical 

exponential stages (Figure 2.32) each with repair rate ]J. Then the repair 

density is the gamma (Erlangian) density 

1 k k-1 -]Jt 
g(t) = k! ]J t e (2.247) 

The parameters k and ]J are determined by equating the mean and the coefficient 

of variation of g(t) to the true ones, i.e. 

k - = '[ 
]J 

1 

1k 
a 

::::::-

T 

(2. 248) 

(k is selected as the nearest integer satisfying 
this equation). 

If v > 1 the stages are connected in parallel. Assuming two stages for 

simplicity, 1 and 2, the failed unit enters either stages 1 or 2 with prob-

abilities p and (1-p) respectively. The repair rates are 2p]J for stage 1 . 

and 2(1-p) for stage 2 (always 0 < p ~ 0.5). The repair density is then 

where p and ]J are determined as before, i.e. 

1 - = T ]J 

(l-2p) 2 

2p(l-p) 
a =-

Figure 2.33 shows the states and transition rates. 

(2.249) 

(2.250) 

Besides the method of stages, another powerful method of handling non­

exponential failure or repair is that of semi-Markov process. Pyke85 ,
86 

has 

studied in detail the semi-Markov model; presentations of the theory may also 

be found in References 5 and 87, while interesting applications appear in 

References 88,89,90 and 91. 
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Figure 2.32. Model of a Repair Process as a Series Connection of K 
Exponential Stages. 
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Figure 2.33. Model of a Repair Process as a Parallel Connection of Two 
Exponential Stages. 
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A semi-Markov process (or Markov renewal process) is a mixing of renewal 

theory and Markov processes. The system can be in any of a finite number of 

states at time t. If it enters state i at time t, it will spend there a random 

amount of time, say T, before visiting state j. Thus we define 

F .. (t) = P[time spent in state i before visiting state j is 
lJ 

less than t]. (2.251) 

Notice that in a Markov process this distribution is the exponential; 

here it can be any distribution. When the system is in state i there is a 

probability p .. that the next transition is to state j. The unconditional 
lJ 

probability that the next transition is to state j before time t has elapsed 

is then 

i ~ j (2.252) 

and the unconditional probability that an exit from state i will occur before 

time t is 

Qi(t) = ~ Qij(t) 

j~i 
(2.253) 

The mean time the system spends in state i is 

(2.254) 

where~ .. is the mean of F.j(t). 
~ l 

The states are classified (absorbing, etc.) as in the case of Markov 

processes. Then equations for the time dependent probability of being in state 

i and the probability of absorption before t can be written down. These 

involve complicated convolution integrals which can be handled with Laplace 
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Transforms, although numerical problems arise due to the complicated character 

of the equations (see Reference 20 for an example). We will not present the 

whole theory here, but only several simple asymptotic results which are very 

useful in practice. These can be expressed in terms of the pij and ~i alone. 

Let P be the matrix with elements pij (the element pii is defined as 

= 1 - 2:; p .. ) • If all states communicate there exists a steady-state 
. 1] 
J 

probability vector IT= (IT0 ,rr2 , ••• ,ITn) where ITi is the asymptotic probability 

that the system is in state i. To find rr. we define the determinants D. as 

D. - determinant of 
1 

column deleted. 

Then it can be shown that 

D.~. 
1 1 

1 1 

the matrix I-P with the ith d . th row an 1 

(2. 255) 

As an example we consider one unit operating and one identical unit on (cold) 

standby. The failure of both units is exponential with failure rate A. 

There is one repair facility and the repair time is fixed T. The states 

of the system are 

0: one unit is operating, the other is on standby 

1: one unit is operating, the other is under repair 

2: one unit is under repair, the other is down. 

The conditional distribution functions F .. (t) and the transition prob-
1J 

abilities must be specified. Clearly 

-At = 1 - e , = 1, = 0 

since the system cannot go from state 0 to 2. The mean time spent in state 0 

is then 
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2 

I: 
i=l 

Once the system enters state 1 there are two possibilities, either it 

goes back to 0 if the repair is completed before the on-line unit fails, or it 

visits state 2, if the failure occurs before the completion of repair (i.e., 

before timeT has elapsed). Therefore p
10 

is the probability that the failure 

of the on-line unit occurs after time T (measured from the moment the system 

enters state 1), thus 

-A.T e 

The probability p12 is then 

= 1 -
-AT 

e 

To find the mean time spent in state 1 we use the unconditional probability 

Q
1
(t), which is 

1 -

0 

therefore, 

lJl = 

-At 
e if t < T 

if t > T (since the failed unit is 
repaired exactly after T) 

Finally, we must find the corresponding quantities for state 2. Since the 

only transition possible is to state 1 we have p21 = 1. To determine ~2 is 

not as simple though. When state 2 is entered one unit is under repair and 

the other one has just failed. The time spent in state 2 is thus the time 

remaining for the completion of repair on the unit which is already in the 

repair facility. 
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-At 
The probability density that a unit fails in (t1 , t 1 + dt) is Ae 1 and 

the probability that it fails before L is p12 , than the probability density of 

failure before T is 

= 

-At 
Ae 1 

1 
-A'r 

-e 

The time remaining until repair is completed is t 2 = L - t
1 

with density 

-A(T-t ) 
Ae 2 

-AT 
1-e 

therefore, the mean time spent in state 2 is 

-h T t..t 2 /..e i t
2
e )12 = 

1-e -AT 

T/..-l+e -h 
= 

(1-e-h) 

dt2 

To calculate the steady-state probabilities we need the determinants D .• 
1 

The matrix I-P is 

( 
~AT -l ~AT) 

I-P -e 1 -l+e 

0 -1 1 

therefore 

D = 1-2 

Obviously the availability of the system is 
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Poo = no + IT = 1 - IT 
1 2 

1 -
0

2112 

l:n.Jl. 
i=O 1 1 

1 
(2.256) = 

TA+e -AT 

It is evident from the previous calculations how extremely complicated the 

method is when more than two units are involved. Several general models are 

listed in Barlow and Proschan (Reference 5) and in Reference 9 the two-unit 

cold standby system with one repairman and general failure and repair distribu-

tions is analyzed. All these results are too complex to be reproduced here, 

however, the following two expressions are particularly simple: 

1. For a system with one unit operating, n-1 units on standby and n 

repair facilities, where all the units are identical with failure rate A .and 

all repair facilities identical with general repair distribution G(t) with 

meanT, the asymptotic probability that the system is in state i is 

(2.257) 

(the state number indicates how many units are down). Thus, for two units the 

availability of the system is 

P oo = no + rr 1 = 1 - rr 2 

(2.258) 
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th 
2. If n components are in series and the MTTF of the i component is 

m
1 

and its MTTR is ti 9 the availability of the system is (Reference 92) 

P "" n .., [1 + £ 
~ 0 i=l 

(2.259) 

The problem of determining the reliability of the various configuration 

has also been studied. The review paper by Osaki (Reference 93) contains the 

theory for two-unit systems and many references, More recent papers on the 

subject are References 89,91 and 94. 

2.D.7. Inspection Intervals 

The corrective actions discussed thus far belong to the class of off-

schedule maintenance procedures: when the system or parts of it fail they 

are restored to the functioning state by some repair process. 

As is often the case with redundant systems a failure can only be 

detected when the system is inspected. The system may still operate, but it 

is not as reliable any more and the probability for a total failure is enhanced. 

By planning to inspect at certain time intervals we can increase the avail-

ability of the system. 

In this s~ction we consider the following model (more general models of 

preventive maintenance will be presented later): 

a, The system has a failure distribution F(t). 

b. It is inspected every Ti units of time. 

c. Failures are detected only when the system is inspected. The prob-

ability of uncovering a failure at inspection is unity. 

d. At each inspection the system is renewed either by repair or replace-

ment of the failed parts. 

We assume that the time it takes to inspect and repair or renew the system is 

on the average T and that failure cannot occur during inspection. r 
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Our objective is to estimate the availability of the system under this 

policy and to select the "best" L'i and/or L'r according to some criterion. This 

model is widely used in engineering applications and various aspects of it are 

discussed in References 9,95,96,97 and 98. 

Since the model is periodic it suffices to examine one period from 0 to 

L'i + L'r (Figure 2.34). .rn the interval L'i + -r:r the system is inoperable for 

a time 1' plus the time interval between its failure and inspection. If it fails r 

at t (0 ~ t ~ L'i) this last interval is y = L'i - t. The average time the system 

is down due to failure is then 

• 1i F(t) dt 

Therefore the average system availability is 

p=l- 1'+1' 
i r 

1' + E[y] 
r 

where R(t) = 1 - F(t) is the system reliability. 

(2.260) 

(2. 261) 

If 1' r is fixed and we wish to calculate the optim11m ·~ i, so that p is 

maximum, we set the derivative of p with respect to L'i equal to zero, that is. 

L'i i R(t) dt = 0 
0 

(2.262) 

A simple example involves a system consisting of one component with 

exponential failure distribution. Then 
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Figure 2.34. Availability of a System Under Inspection and Repair. 
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p 

-h 
1 - e i 

A(T.+ T) 
:L r 

and the optimum Ti is the solution of 

hi 
e 1 + A(T. + T ) 

:L r 

If we assume that 

A(T. + T ) « 1 
1. r 

the availability reduces to 

T 
p = 

T. + T 
1. r 

h. 
~1 

1. - -2- if 

2 
A T. 

1. 

2(T .+ T ) 
:L r 

T << T. 
r 1. 

and the optimum inspection interval is .determined from 

= 1 + A(Ti + T) 

which yields 

(2.263) 

(2. 264) 

(2.265) 

(2. 266) 

(2.267) 

For systems consisting of two or more components the failure distribution 

is determined by the individual distributions and the log5~al interconnection 

of the units. Furthermore, the test can be conducted in either of two ways: 

if simultaneous testing is used all the components are checked at the same time, 

while in staggered tests the components are tested in different times and, as a 

result, at any instant of time the units have been in operation for different 

times. The type of testing employed also affects the system availability. 
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In redundant systems it would be meaningless to test all components at the 

same time, thus rendering the system inoperable. In the case of simultaneous 

testing the units are actually checked consecutively, so that the system can 

perform its task at all times. In order to see the effect of testing on a 

redundant system we analyse the case of two units in parallel under simultaneous 

testing. The test is performed every L, units of time and the checking and 
1. 

repair time for each unit is L (the units are identical with failure rate>.). 
r 

Then the period is L, + 2L • To estimate the unavailability q of the system 
1. r 

it is convenient to write 

q (2. 268) 

where q
1 

is the average unavailability during the interval Li due to undetected 

failures of the system, and q2 is the average unavailability during the interval 

2L due to failures of the system while one component is under testing. 
r 

Again we assume that 

A(L. + 2L ) « 1 
1. r 

so that for each component the failure distribution is approximated by 

F 
c 

1 -
-At e 

(2.269) 

(2.270) 

During Li the failure distribution of the system is (one-out-of-two system) 

therefore 

(h .)3 
= --:-~__;;;1.~--:--

3A(L.+2L) 
1. r 

(2.271) 

(2. 2 72) 
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Usually Ti >> 2Tr whence 

2 
(ATi) 

q = 1 3 

During 2T the failure distribution of the system is 
r 

T. + T < t < T + 2T 
L r i r 

(2.273) 

(2.274) 

since at T. + T the operating component starts as good as new, therefore, 
L r 

[t+\t Ti+2T ] 
1 dt + i rA[t-(Ti+Tr)]dt (2. 2 75) q2 = (T .+2T ) 

L r Ti T.+T 
1 r 

which, under the assumption Ti >> 2Tr' simplifies to 

q = AT 
2 r 

(2.276) 

Therefore, the average unavailability of the one-out-of-two system under 

simultaneous testing is 

q = ql + q2 

2 
(AT.) 

L + AT = 
3 r 

(2.277) 

under the assumptions 

T r << T i the average time to inspect and repair is much shorter 

than the inspection interval, 

and 

T.+2T «_! 
1 r A the mean time to failure for each component is 

much. longer than the testing period. 
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We now proceed to estimate the unavailability in the case when the checking 

of each component is staggered over the interval T .. Figure 2.35 shows the 
]_ 

new situation: each unit is on-line forT. units of time. The only difference 
]_ 

is that if one unit starts operating at t=O the other starts at t = kTi + Tr' 

where 0 S k S l, In a period (0, Ti + Tr) the following situations arise: 

(O,kT.): one unit has been on line for a timet and the other for 
1 

a time t + (1-y-)Ti 

(kT., lni+T ) : one unit is operating with age t, the other is down 
1 r 

(kT .+T , T .) : one unit is operating with age t and th.e other with 
1 r 1 

(Ti, T.+T ): 
1 r 

age t-(kT.+T) 
1. r 

only one unit of age t-(kT.+T) is operating. 
1. r 

The unavailability is then 

+ l
li 2 

A [t-(kT.+T )]t dt + 
1. r kT.+T 

1 r 

Performing the integrations and assuming that Tr << Ti we get 

(AT.) 
2 

]_ 
q=---+h 

3 r 

(h.)2 
-2-"

1
- k(l-k) 

(2.278) 

which attains its minimum fork= 1/2 (symmetrical or uniformly staggered test), 

thus 

(2.279) 
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SECOND UNIT 

FIRST UNIT 

0 

~------------------~-- ~--------

( K + 1) r 1 + 2 r r 

Figure 2.35. Staggered Testing of a one-out-of·two System. 
The first unit startll new at t = 0 and is working until r1 
(continuous line) and then it is tested for r, units of time 
(broken line). The second unit starts at Kr1+ r, and works 
for 1j units of time and then is put under testing for r, units 
of time, etc. 
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This expression may again be considered as the sum of two unavailabilities 

q
1 

and q
2 

as defined before, with 

and 

h 
r 

Notice that q
1 

is greater for a uniformly staggered test than for a 

simultaneous test. This is true for any configuration. 

These formulas can be generalized to other more complex situations. For. 

instance, under the same assumptions as before and for a parallel system with 

n units (one required) the unavailabilities are: 

q 

n! (n+3) (h .)n 
~ q = --------~~--

4nn(n+l) 

simultaneous test (2. 280) 

(n-1) I O:r.) n-2 l.:r 
+ --------~~~----~r-­

n-2 
n 

, perfectly staggered test 

(each unit tested every T/n, n ~ 5) 

(2. 281) 

For some common configurations Table 2.1 gives the unavailability due to 

failures (i.e., q1) for simultaneous and symmetrically staggered testing 

(Reference 99). 

This discussion was confined to estimating the effects of testing and 

renewal on the availability of the system. The results then may be used to 

estimate T. and T so that a specific reliability goal can be achieved. 
~ r 

Assume that the unavailability of the system should not be greater than 

q. Then for a nonredundant system the time interval between tests is found 

from Equation (2.266), i.e. 
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TABLE 2.1 UNAVAILABILITY AS A FUNCTION OF LOGIC 

CONFIGURATION AND TESTING SCHEDULE. (Ref. IEEE STD 352-1972) 

LOGIC m/n SIMULTANEOUS PERFECTLY STAGGERED 
TESTING TESTING 

1/2 (1/3) O:ri)
2 

(5/24) (ATi)
2 

2/2 Ali ATi 

1/3 (1/4) (hi)
3 

(1/12) (hi) 
3 

2/3 (ATi)2 (2/3) (ATi) 
2 

3/3 (3/2) (ATi) (3/2) (ATi) 

1/4 (1/5) (ATi)4 (251/7680) (AT.) 4 
~ 

2/4 (ATi) 3 (3/8) (ATi)3 

3/4 2 (ATi)2 (11/8) (ATi)
2 

(1/2) X 2 2/3 (ATi) 2 (5/12) (ATi) 2 

190 



( 

hence 

T = 1..9.. 
i A 

q 

For redundant systems we must have 

(2.282) 

Hirsh (Reference 97) used the criterion that during testing and repair the 

unavailability of the system should be equal to its unavailability during 

normal operation, i.e. 

whence 

q = ..9. 
1 2 and q = ..9. 

2 2 

(2. 283) 

(2. 284) 

These two relations allow one to calculate both the testing interval T. and 
~ 

the allowable repair time Tr. The expression for q1 can be found in Table 2.1 

or must be calculated. Similarly q2 must be calculated. Several common cases 

are given below: 

one-out-of-n system: 

simultaneous testing: 

T. =..!. \/(n+l)q 
~ A 2 

(2.285) 
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Uniformly staggered test (n ~ 5) 

n! (n+3) O:r .)n 
____ ,.;;1.::...,_ - .9. 

- 2 n 
4n (n+l) 

two-out-of-three system: 

simultaneous testing: 

3A'r = .9. 
r 2 

uniformly staggered test: 

2 (A'r ) 2 = .9. 
3 i 2 

3A:r = .9.. 
r 2 

two-out-of-four system: 

simultaneous testing: 

192 

1' = __9,. 
r 2/.. 

1'. =1Vf l. 

=__9,. '"[ 
r 6/.. 

'"[ :::: __9,. 
r 6/.. 

n-1 
n 

(2.286) 

(2.287) 

(2. 288) 

(2. 289) 



uniformly staggered test: 

2 
T = 

r [n w- 3~r] 
one-out-of-two twice system 

simultaneous testing: 

'r =1.'/iS 
'i A V4 

T 
r 

=__9. 
4A 

uniformly staggered test: 

T =l_'(fi 
i A v-s 

T 
r 

=__9,._ 
4A 

(2.290) 

(2.291) 

(2.292) 

Also in Reference 97 nomographs are presented for graphical estimation ofT. 
]_ 

and T in these cases. 
r 

2.D.B. Maintenance Policies 

The model analyzed in the preceding secti.on is only one of the many 

different maintenance policies that can be employed. Presentation of other 

general models can be found in References 5,69,95,100 and 101. Here we 

discuss several generalizations which illustrate the various approaches to 

maintenance. 

A general model which allows for imperfect checking, distinction between 

checking time and repair time and failure during checkout is as follows: 102 
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-At a. The system fails according to the exponential distribution F(t)=l-e • 

b. Inspection is performed every Ti units of time. 

c. Inspection takes T units of time. 
c 

d. The probability that a failure will be detected is 8. 

e. The probability of a false alarm (i.e., calling a good system bad) is a. 

f. Inspection introduces stresses on the system and the probability that 

the system will fail during the checkout period is B. 

g. The probability that the failure, which occurs during the checkout 

period, occurs before the actual testing is y. 

h. If a failure is detected, the duration of repair is on the average T . 
r 

Under these of the system is found to be 

If the system cannot fail during checkout CS=O) and if no false alarm is 

possible (a=o), then the availability is 

p = 
A(T .+T ) [ 1 -

1. c 
-AT i ] ( -h. ) 

e (1-8) +8h r 1-e 
1 

If in addition the detection of failure is perfect (8=1) we have 

-h. 
1 - e 

1. 

p = 
A[T.+T +T 

1. c r 

(2. 294) 

(2.295) 

This equation is similar to Equation (2,263). In the latter the checkout time 

and the repair time are lumped in the constant T , while in Equation (2.295) 
r 

these two times are separated and the time required for repair is multiplied 
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by the probability of the system being down at the end of Ti' since only then 

is repair undertaken. 

As a last maintenance policy we discuss that of marginal testing. A com-

ponent can now be in more than two (up-down) states which are divided into 

three groups: A (good), B (marginal, the component still operates satisfactorily 

but it is expected to fail soon) and C (bad, the component is failed), When the 

component reaches C its failure is detected immediately and it is replaced in 

negligible time, Furthermore, at regular time intervals a test is performed 

to determine whether the component is in A or B (it cannot be in C, since 

failure is detected immediately). If it is found to be in A it passes the test, 

while if it is in B it fails the test and it is replaced in negligible time, 

thus starting operation in state A. This model is discussed (along with other 

maintenance policies) in Reference 101 using the theory of semi-Markov processes 

and in Reference 103 it is analyzed in detail under the assumption that the 

process is Markovian. In this case the transition rates A .. during normal 
1] 

operation are assumed to be known. Assuming that the component is initially 

good (i.e. in state 0) and that the test is performed in intervals of T 

units of time integral equations for the following quantities are derived: 

1. the expected number of failures in [O,t] 

2. the expected number of preventive removals in [O,t] 

3. the reliability function R(t;x), i.e. the probability of no failure 

in an interval of duration t following component age x. 

These equations are too complex to be reproduced here. 
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3. SAFETY ANALYSIS OF COMPLEX SYSTEMS 

3.A. LOGIC DIAGRAMS 

3.A.l Introduction 

In this chapter we study the methods which can be used for a quantitative 

safety analysis of multicomponent systems. There are various reasons as to 

why the approach of statistical distributions fails in this case. The fore­

most of these is that each such system is unique in the sense that there are 

no other identical systems (same components interconnected in the same way 

and operating under the same conditions) for which failure data have been 

collected, in order to make a statistical analysis possible. Furthermore, it 

is not only the probabilistic aspects of failure of the system which are of 

interest but also the initiating causes and the combination of events which 

can lead to a particular failure. 

It is already apparent that the methods we will develop will be event c 

oriented, that is, they will not be limited to analyzing a system failure in 

terms of component failure alone, but they will also include other events, such 

as human errors, which may influence the performance of the system. 

The natural way to attack a problem of this nature, where many events 

interact to produce other events, is to relate these events using simple 

logical relationships (intersection, union etc) and methodically to build a 

logical structure which represents the system. In fact, this is the underly­

ing principle in all the methods, which deal with complex systems. An indis­

pensable tool of the analysis is the logic diagram, which depicts the events 

and their logical relationships. We have already encountered the simplest 

form of a logic diagram when we examined series and parallel systems in Chap­

ter 2. The logic diagram is different from the system diagram, which simply 

shows the physical connection of the components of the system, although it will 

be recognized that the former draws much information from the latter. 
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The various methods can be classified as qualitative and quantitative or 

as inductive and deductive. Usually it is the combination of these approaches 

which leads to a successful safety analysis. A method is qualitative if its 

main goal is to discover how a particular event can occur or to what conse­

quences it leads. A quantitative method, on the other hand, attempts to 

describe probabilistically the phenomena and clearly it must be preceded by a 

qualitative method. 

A more important distinction is that between inductive and deductive 

methods. An inductive method starts from a particular event and proceeds to 

uncover its consequences, while a deductive method proceeds backwards to 

identify the causes of the event. Both approaches may give qualitative and 

quantitative results, 

These introductory remarks already show how important the tools of 

mathematical logic are in the study of complex systems, An elementary intro­

duction to the subject is presented in the next section. 

3 .A. 2 Logic 

A fundamental notion in logic is that of a proposition or statement. It 

is best introduced by examples, like "valve fails closed", "the power is off" 

etc. It is the meaning of such sentences which is called a proposition, with­

out regard to the actual words used or to any subjective meaning the sentence 

may have for the speaker or listener (this definition ~nd much of what follows 

may be found in Ref, 104). The propositions that interest us are the ones that 

are either true or false, Then we may assign an indicator or truth value to 

each proposition. The indicator is (arbitrarily) set equal to 0 if the propo­

sition is false and equal to 1 if the proposition is true. The most common 

proposition in safety studies is "component i is failed", which implies that 

the component can be in either of two states, good or bad, If the component 
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can be in more than two states (e.g., a valve may be good, fail open or fail 

closed) nothing changes, except that for each mode of failure there will be a 

proposition which can be true or false, and these propositions will be included 

separately in the study. Thus, for the valve the two propositions are "the 

valve fails closed" and "the valve fails open". Notice however that in any 

one of these is false, it doesnot necessarily mean that the valve is good, 

since it may have failed according to the other mode of failure. 

From given propositions we can derive new ones by applying simple opera­

tions. There are three fundamental operations, the union, the product and the 

complement. Their graphical representation (logic gates) is shown in Fig. 3.1 

The union of n propositions A1, A2 ..• An is a new proposition B formed as 

B = A1 or A2 or ••• or An meaning that B is true if any one of the Ai is true 

(including the possibility that more than one Ai may be true). Alternatively, 

B is false if all the Ai are false, Symbolically we write B = A
1 

VA
2 

V ••• VAn' 

or B = A1 + A2 + 

union of sets. 

+An. The corresponding operation in set theory is the 

The product of n propositions A1, ••• ,An is a new proposition formed as 

B = A1 and A2 and ••• and An meaning that B is true if all the Ai are true. 

We write B = A1 A2 ••• An. It corresponds to the intersection operation in set 

theory. 

Finally, the complement of a proposition A is a 'new pro:position B, which 

is true if A is false and false if A is true, We write B = A. Notice that 

this operation can be performed on one proposition only. 

These three operations are the fundamental ones and any other operation 

on a finite number of propositions may be expressed in terms of products, 

unions and complements. Of course, given a logical function of a number of 

propositions we would like to know its truth value, A theorem which enables 
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B B B 

B B B 

A B 

NOT GATE: B = not A = A 

Figure 3.1. Logic Gates. 
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us to do so states that the truth value b of a proposition B which is a 

function of the propositions Ai' is the same function of the truth values ai 

of the propositions Ai. For example, the truth value of the AND gate is 

b = a 1a 2 ••• an' If we use the indicator values 0 and 1 as defined before, we 

see that b is 1 (true) if and only if all the ai are l(true), which is the 

definition of an AND gate. Therefore, the truth value of the logical function 

can be found by simple operations on the truth values of the original proposi-

tions. However, since the truth value a of a proposition A can be either 0 or 

1 (binary logic), the following properties should be observed for the results. 

to be consistent: 

1. Complement 

0 = 1 

I=o 

2. Union 

a + a = a 

1 + a = 1 

a+ a= 1 

3. Product 

aa = a 

a.O = 0 

aa = 0 

(hence, 1 + 1 = 1) 

(3 .1) 

(3.2) 

(3. 3) 

(3. 4) 

(3. 5) 

(3. 6) 

(3. 7) 

Other operations with 0 and 1 follow the rules of arithmetic (e.g. 0 + 1 = 1, 

0.1 = O, etc.). Two laws which are often useful in the study of logical func-

tions are the involution law (compare with Eq. (3.1)): 

= a = a (3. 8) 
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and de Morgan's law: 

a+b=ab 

ab =a+ b 

(3.9) 

(3.10) 

Eq. (3.9) states that the complement of the output of an OR gate with inputs 

A and B is the output of and AND gate with inputs A and B. Similarly, 

Eq. (3.10) states that the complement of the output of an AND gate is the out­

put of an OR gate with inputs A and B. 

A convenient way to find the truth value of a logical function is the 

truth table. It lists the propositions and all the combinations of their truth 

values with the corresponding truth value of the outcome, Table 3.1 exhibits 

the truth tables for an OR and AND gate with two inputs each and for a NOT gate, 

With the help of the three basic logical operations that we have introduced 

we can form any other logic gate which may be useful in a particular problem, 

The most common of these is the r-out-of-n gate (Fig. 3.2). The output B is 

true if any r or more inputs are true. The AND and OR gates are special cases 

of this gate for r = nand r = 1 respectively. As an example, consider the 

2-out-of-3 gate, Its output is 

(3 .11) 

and its truth table is shown in Table 3.2. 

The operations with 0 and 1 presented above belong to a formal mathematical 

theory called Boolean algebra. It concerns the algeb~a of a set S with elements 

a
1

, a 2, ••• (in the previous case the set consisted of the elements 0 and 1 only) 

in which the union (sum) and product are defined to obey the following axioms: 

commutative law 

al + a2 = a2 + al 

al a2 = a2 al 
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TABLE 3.1 TRUTH TABLES FOR OR, AND AND NOT GATES 

A1 A2 B = A1 + A2 C = A1 A2 

0 0 0 0 

1 0 1 0 

0 1 1 0 

1 1 1 1 

A B =A 

0 1 

1 0 

TABLE 3.2 TRUTH TABLE FOR A 2-0UT-OF-3 SYSTEM 

A1 A2 A3 B = A1A2 + A2A3 + A3A1 

0 0 0 0 

1 0 0 0 

1 1 0 1 

0 1 0 0 

0 0 1 0 

1 0 1 1 

1 1 1 1 

0 1 1 1 
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Figure 3.2. r-out-of-n Logic Gate. 
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associative law 

distributive law 

0 is the identity element for the union, i.e., 

1 is the identity element for the product, i.e., 

For any ai its complement .exists, i.e., 

a 1 + ai = 1 

a. a. = 0 
l. l. 

(3.14) 

(3 .15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3. 21) 

An important property. is the duality principle: in any Boolean expression 

we can interchange unions and products and the elements 0 and 1 and thus produce 

another valid Boolean expression, This enables us to study either the failure 

or the success of a system, ' 

Suppose now that a function consists of unions, products and complements 

of n Boolean variables x1, x2, ••• xn (e.g. xi may be the indicator of a proposi­

tion and it can be 0 or 1). We call this function a Boolean function of the 

variables x1, x2, ••• xn and. we write ¢(x1, x2, ••• ,xn). When we consider the 

Boolean algebra of 0 and 1, it is clear that ¢(x
1

, ••• ,xn) will also take the 

values of its variables. In this case ¢ is called a switching (or structure) 

function. It maps ann-dimensional vector x ~ (x
1

, ••• xn) of O's and l's onto 

0 or 1 (see Refs. 104 and 105). 
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A theorem that is very useful in reliability studies concerns an expansion 

of a switching function as follows 

(3.22) 

It states that the switching function is equal to the union of two products: 

the first is the product of one of the variables times the switching function 

with the variable assumed true and the second is the product of the complement 

of the same variable times the switching function with the variable assumed 

false. 

A fundamental product of n variables is a product containing all of them 

complemented or not (but a variable cannot appear together with its complement 

in the product). n For n variables there are 2 such products, e.g., for n = 3 

we have 

(3. 23) 

that is, 23 = 8 fundamental products. Clearly a fundamental product is 1 if 

and only if all its variables are 1. An important theorem is that a switching 

function can be written uniquely as the union of the fundamental products which 

correspond to the combinations of the variables which render the function true 

(i.e., ~ takes the value 1). This is called the canonical expansion or disjune-

tive normal form of~. For example, the switching function of a 2·out-of-3 

system is expanded as (usihg 3.23). 

As another example, consider the gates of Fig. 3.3. The fundamental 

products are 

(3. 25) 
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B 

Figure 3.3. Switching Function of a Logic Diagram Involving 
a NOT Gate. 
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and the switching function is 

(3.26) 

The expansions (3.24) and (3.26) can be simplified further as follows. 

We observe that in Eq. (3.24) the first two terms have the product x1x
2 

in 

common while the remaining part (x3) of the first product appears complemented 

in the second. Using the distributive law, .Eq. (3.12), we get 

xlx2x3 + xlx2x3 = xlx2(x3 + x3) = xlx2 

Repeating the above steps we finally reduce Eq. (3.24) to 

~(xl' x2' x3) = xlx2 + x2x3 + x3xl 

Similarly Eq. (3.26) can be written as 

(3.27) 

(3.28) 

It is clear that no further simplification of the products (which, of 

course, are not fundamental any more) can be achieved. Each product repre­

sents the minimum number of propositions, which, if true, render ~ true, 

e.g., in Eq. (3.27) if x1 and x2 are true then~ is true (1), and in Eq. (3.28) 

if x1 is true then ~ is true, This discussion introduces the notion of a 

minimal path set which is _the minimal set of the variables and/or their comple-

·ments, which by being true cause the switching function to be true, 

There is an important difference between the switching functions of 

Eqs. (3.27) and (3.28). In the first no complements of the variables appear, 

while in the second x 1 alone is capable of yielding ~ true. This is the con­

sequence of the presence of a NOT gate in Fig. 3.3. Logical structures of the 

type of Eq. (3.27) are very common in applications and are called coherent or 

monotonic structures. 5' 106 , 107 Their basic feature is that if a variable takes 

on the value 1 it can only contribute to the truthfulness of the switching 
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function (which, of course, is not the case with the variable x1 of Fig. 3.3). 

More formally a coherent structure function has the following properties: 

if ~= (1, 1, •.. ,1) (3.29) 

i.e., if all the variables are true, ~is true, 

if ~ = (0, o, .. .,0) (3. 30) 

i.e., if all the variables are false, ~is false, 

if for all i (3. 31) 

i.e., if a variable is false and it becomes true, this cannot cause the 

switching function to become 0, it either keeps its initial value, or it 

becomes 1. 

For coherent structures it is easier to visualize the meaning of a path 

set: it is a set of the variables, which by being 1 (true) yield the structure 

function true. A minimal path set is a path set which does not have another 

path set as a subset. Thus, for a 2-out-of-3 system, the set {x1,x2,x3 } is 

a path set but not a minimal path set, since {x
1
,x

2
} is a path set also • 

If the variables xi , xi 
1 2 

nient to define their product 

x. 
~k 

••• xi form a minimal path set, it is conve­
k 

(3. 32) 

and use these products to write the structure function as 

m 

~(~) = 1 - n (l-si) 
i=l 

(3. 33) 

This equation simply expresses the fact that if any of the m minimal path sets 

is true, then the structure function is true (the symbol n means the product 

of the Boolean variables). In this manner we have reduced the logical struc-

ture to an OR gate with inputs the minimal path sets (Fig. 3.4). 
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m 
cf> = 1 - n ( 1-s;, 

i=1 

Figure 3.4. Representation of a Structure Function as the Union 
of Minimal Path Sets. 
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Another simple representation of the structure function can be achieved 

with the use of minimal cut sets. A cut set is a set of variables which by 

being false cause ¢(~) to be false. A minimal cut set does not contain another 

cut set. By taking one variable from each minimal path set, we can form a 

minimal cut set. Thus, for the 2-out-of-3 structure the minimal cut sets are 

{x1 ,x2}, {x2,x3} and {x3,x1}. Since all the variables xi
1

' xi
2

, ••• ,xir 

,minimal cut set must be 0 for ¢ to be zero, we define the variable 

of a 

r 

c. = 1 - n (1-x. ) 
1 j=l 1j 

and we may represent the structure function as 

k 
¢(x) = n c. 

- i=l 1 

(3.34) 

(3.35) 

Eq. (3.35) states that if any of the minimal cut sets is zero, then ¢ is zero. 

The structure function, therefore, is reduced to an AND gate, as shown in 

Fig. (3. 5). 

The minimal path (cut) sets are extremely useful for the analysis of 

complex structures, since they deal wit~ the critical combinations of the 

variables, that can yield the switching function true (false). 

3.A.3 Reliability Diagrams and Fault Trees 

Two of the most useful logic diagrams are the reliability block diagram 

and the fault tree. 

The reliability diagram shows the functional relationships of the compo-

nents of a system which is intended to accomplish a specified function between 

two points A (start) and B (finish). The series and parallel systems discus-

sed in Sections 2.C.2 and 2.C.3 (Fig. 2.24 and 2.25) are obviously such dia-

grams. In practice most systems can be depicted as combinations of elements 

in series and parallel (coherent structures). 
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Figure 3.5. Representa~iofl of~ Structure Function as tile Produ~ 
of Minimal Cut ~~ts~ 
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A simple example is the following: an experiment is conducted in a room 

in which the temperature must be kept within specified limits, otherwise the 

experiment should stop. Three sensors (thermocouples) monitor the room tem­

perature and their outputs ·are connected to an indicator light. If the tem­

perature is within the acceptable limits the light is off, otherwise the light 

is on and an operator proceeds to stop the experiment. To avoid false signals 

it is decided that at least two out of the three sensors must give an output 

for the light to be on (i.e., 2-out-of-3 logic is used). Denoting the sensors 

as s1 , s2, s3 and the light 1, the reliability diagram is shown in Fig. 3.6. 

In 3.6.a and 3.6.b the diagram is drawn using series and parallel combinations. 

The use of the 2-out-of-3 gate in 3.6.c simplifies the diagram in that every 

component appears only once. 

The switching function ¢ of this logical configuration is readily found 

to be 

and the minimal path sets are 

{s
1
,s

2
,L}, {s

2
,s

3
,L}, {s3 ,SpL} 

The minimal cut sets are 

(3.36) 

(3.37) 

(3. 38) 

The logic diagram can be redrawn in the form of a tree if we define a top 

event (or proposition) as system success meaning that the temperature is 

correctly monitored by at least two of the sensors and the light is turned on. 

The tree is shown in Fig. 3.7 and it is equivalent to the block diagrams of 

Fig. 3.6. Using the duality principle we change the top event into SYSTEM: 

FAILURE, interchange unions and intersections and replace the inputs by their 

complements. The resulting tree is shown in Fig. 3.8. 
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A c B 

(a) 

!""'"-- s1 I-- - s2 1-- - s3 1--

.... L 
A B 

......... s2 1-- ...._ s3 1-- I-- s1 1--

(b) 

L 
A B 

(c) 

Figure 3.6. Different Forms of a Reliability Diagram. 
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SYSTEM 
SUCCESS 

Figure 3.7. A Logic Diagram in a Tree-Form. 
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SYSTEM 
FAILURE 

Figure 3.8. The Dual Form of the Tree of Figure 3.7. 
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The common feature of all the previous diagrams is that they depict the 

logical interconnection of the hardware of the system under study, In a 

safety study, however, there are additional factors which influence the per­

formance of the system. These may be incorporated in the tree diagram and 

since it is more convenient to work with failures than successes we use the 

tree which has as top event a specified failure. Thus the fault tree approach 

results which has found wide applicability in safety analyses. 

For a formal application of the method special symbols are used in addi­

tion to the logic gates (Fig. 3.9 and 3.10). 

The unfavorable event which is put in the top is TEMPERATURE OUTSIDE 

LIMITS NOT DETECTED and it is analyzed as shown in Fig. 3.11. Notice that 

all possible causes of failure to monitor the unacceptable temperature are 

included. In fact the fault tree shows that failure of the operator alone 

to notice the light may cause the top event to occur, even though the hardware 

of the system function properly. Another detailed construction of a fault 

tree is given by Haas! (Ref. 108) in one of the early papers on the method. 

It is already apparent that the construction of the tree requires an 

intimate knowledge of the system and its environment. The fault tree of Fig. 

3.11 is only one of the trees that might be drawn for the above example; in a 

real situation there may be other additional factors which would be deemed 

important enough to be incorporated in the tree, An attempt to develop a 

formal methodology for fault tree construction was made by.Fussell (Ref. 109). 

It is limited to electrical systems and considers only hardware failures. 

The modes of failure of each component are stored in a library from which a 

program called DRAFT draws the appropriate primary inputs that can lead to the 

top event. To make the method systematic a whole set of definitions and clas­

sifications of events and other conditions is introduced, so that after a 
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THE EVENT X HAS BEEN ANALYZED TO ITS 
CAUSES AND IS STATED ONLY FOR CONVENIENCE 
IN READING THE FAULT TREE 

X HAS NOT BEEN ANALYZED TEMPORARILY BUT 
IT Will WHEN THE FAULT TREE IS COMPLETED 

X IS A PRIMARY INPUT EVENT WHICH NEEDS NO 
FURTHER ANALYSIS SINCE ITS PROBABILISTIC 
CHARACTERISTICS ARE KNOWN 

Figure 3.9. Fault Tree Symbols. 
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INHIBIT GATE: ITS OUTPUT IS PRODUCED BY 
THE (SINGLE) INPUT IF THE CONDITION X IS SATISFIED 

TRANSFER-IN SYMBOL 

TRANSFER-OUT SYMBOL. THE TRANSFER 
SYMBOLS CONNECT PARTS OF THE TREE 
DRAWN IN DIFFERENT POSITIONS. 

Figure 3.10. Fault Tree Symbols. 
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OPERATOR 
FAILS TO 
NOTICE THE 
LIGHT 

TEMPERATURE 
OUTSIDE LIMITS 
NOT DETECTED 

POWER OFF 

FUSE 
BLOWN 

POWER 
FAILS 

LIGHT IS 
NOT ON 

SENSORS 
FAIL 

Figure 3.11. Fault Tree Example. 
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certain stage in the analysis of the top event has been reached, the program 

proceeds to complete the tree by piecing together the primary inputs, 

3.A.4 Probability Relations 

The logic diagrams form the basis upon which a probability analysis can be 

carried out. From the diagram, the laws of probability theory and the primary 

input information certain useful probabilistic quantities for the system and 

its subsystems can be calculated. A systematic approach is presented by 

Murchland in Ref. 110, while Refs, 111 and 112 contain the basic ideas and 

expressions. 

The logic diagram (either a reliability block diagram or a fault tree) 

represents logical relations of propositions or events, as they are commonly 

called. We have agreed in Sec. 3.A.2 to assign the truth value (indicator 

variable) 1 to a true proposition and the truth value 0 to a false proposition 

The expected value of the indicator variable x. of a proposition is the probab­
~ 

ility that the proposition is true, i.e., 

p. = E[Xi] = p[x.=l] (3.39) 
~ ~ 

For a success diagram then the proposition will express successful perfor-

mance and p.(t) will be the reliability or availability (if a maintenance 
1 

scheme is employed) of the input. For example, in the block diagrams of 

Fig. 3,6 and in the tree diagram of Fig. 3.7 the input L corresponds to the 

statement "light is turned on". In a fault tree the propositions express 

failures and p.(t) will be the unreliability or the unavailability of the input. 
1 

The inputs 11fuse blown", "power fails" etc. of Fig. 3.11 serve as examples. 

To avoid confusion we will denote the availability as pi(t) and the unavailabil­

ity as q . ( t) • 
~ 
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If the primary inputs are under a repair policy another quantity that is 

needed is the failure intensity wf(t) (which is a renewal density in the sense 

of Section 2.D.3). Its definition is 

wf(t)dt =probability that a failure occurs in the interval (t,t+dt) 

Similarly we define the repair intensity w (t) (see Section 2.D.3). 
r 

An item or vertex is a generic term which refers to the whole system, a 

subsystem or a primary input. In Fig. 3.6.a the components between A and C 

can be referred to as an item and in the fault tree of Fig. 3.11 the top event 

and the events "Light is not on", "power off" etc. are items. For an item two 

fundamental relations are true, The first relates its unavailability q(t), 

its expected number of failures Wf(t) and its expected number of repairs Wr(t) 

both evaluated over the interval (O,t); this relation is 

given that initially 

The proof of Eq. (3,40) follows if we notice that 

(exact number of failures) - (exact number of repairs) 

(3.40) 

if the item is 
failed at t 

if the item is 
good at t. 

Taking .the expectations of both sides of this equation we derive Eq. (3.40). 

For the availability the corresponding relation is, n~ course, 

which is Eq. (2.169) for a component. 

The quantities wf(t) and wr(t) are evaluated by 

t 

= I wf(T)dT + q(O) 
0 
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( 

and 

w (t) = 
r 

t 

I W (T)dT 
0 r 

(3.43) 

The second relation refers to the interval unreliability, which is 

defined as 

U(s,t) - probability that the item is failed at s or, if it 

is good at s, it will fail before t. 

For the unreliability upper and lower bounds are given as follows 

max q(a) ~ U(s,t) ~min {q(s) + Wf(t) - Wf(s), 1} 
s~a~t 

For the interval (O,t) this relation becomes 

max q (a) ~ U(O, t) ~ min {Wf(t), 1} 
0 ~a~ t 

For non-repairable items we have 

U(s,t) = q(t) 

The proof can be found in Ref. 110. 

(3.44) 

(3. 45) 

(3. 46) 

The above relations, though very useful, do not indicate how the quanti-

ties appearing are calculated from the primary input information. A fundamental 

assumption for such an analysis is that the performance of each primary input 

is statistically independent of that of the other inputs. This assumption 

forbids, for example, the presence of two components in parallel with one 

repairman. However in such special cases this subsystem can be analyzed with 

the methods of Sections 2.D.4, 2.D.5 or 2.D,6 and the resulting q(t) and wf(t) 

of the subsystem are used as representative functions of a single input to the 

logic diagram. 

A probability analysis is poss'ible if the switching function of the item 

is available. Then we utilize Eq, (3.39) and we take the expectation value of 

¢(x), or we use elementary probability laws to find the unavailability (or 
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availability) of the item in terms of the q's (or p's) of its predecessors. 

We recall that for an AND gate (items in series) the structure function is 

and the probability of this intersection of independent events is 

n 
qB (t) = fl qA (t) 

i=l i 

For an OR gate (items in parallel) the switching function is 

and the probability is found from Eq. (2.2) which we rewrite here 

n 

= EqA (t) 
j=l j 

For two events the formula gives 

- •• 0 + 

(3.47) 

(3.48) 

(3.49) 

For more than two inputs Eq. (3.48) is quite complicated, but useful bounds 

can be estimated as 

n 

qB(t) s L qA (t) 
j=l j 

n n-1 n 
qB(t) ~ ~ qA (t) - E ~ qA A (t) 

j=l j i=l j=i+l i j 

etc. 

Finally for a NOT gate (complement of an event) we have 

B =A 
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Consider as an example an item which is a 2-out-of-3 system. Its switching 

function is given by Eq. (3.27) and applying the above rules we 'find for the 

probabilities 

(3.53) 

The same result is obtained if we start with the form of the switching function 

given in Eq. (3.24) and expand the complements as in Eq. (3.52). 

The switching function can be found by the methods of Section 3.A.2. We 

start from the items of least complexity and proceed to build the system switch­

ing function (or directly the probability expression). Special care is required 

when one item appears more than once in the structure (or, equivalently, if an 

item has two or more successors in a tree diagram). In cases like a 2-out-of-3 

system the subsystem is analyzed separately and its output is added as a single 

input to the whole system. Another approach is to use the expansion of 

Eq. (3.22). Logical structures in which all items have only one successor are 

called simple and obviously their hierarchical structure makes them easier to 

analyze. For detailed applications of this method of successive reduction of 

the diagram see Refs. 113 and 114. For large block diagrams the British pro­

gram NOTED (Ref. 115) utilizes the method of reduction to estimate the unavail­

ability. Various distributions for the inputs are available (exponential, 

normal, log-normal, Weibull) and repair and periodic inspection can be included, 

For every item the unavailability q is a polynomial of the unavailabilities 

qi of each predecessor; each qi appears in the first power in the polynomial 

(this is clear from the way the item unavailability was constructed), Therefore, 

we can write 

(3.54) 
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and for the partial derivatives 

~q =independent of qJ .• 
qj 

For coherent structures the following is true (compare with Eqs, (3.29), 

(3.30) and (3.31)) 

q(O,O, .•• ,0) = 0 (3.55) 

(if all predecessors are good the item unavailability is zero) 

q(l,l, ••• ,l) = 0 (3.56) 

(if all predecessors are failed the item is failed also) 

(3.57) 

(if the unavailability of a predecessor increases the item unavailability cannot 

decrease; as a result NOT gates cannot be present). 

These introductory comments will now be used to derive an expression for 

the failure intensity of the item wf(t) in terms of the failure intensities of 

its predecessors wf .(t). A further assumption is introduced here which states 
,l. 

that in the interval (t, t + dt) only one component can fail, the probability 

of two or more failing being of second or higher order in dt, Under this 

assumption and for coherent structures it is proven in Ref, 110 that 

wf<t> = :E w . (t) aq(t) 
all f,l. aqi(t) 

(3.58) 

predecessors 

Notice that ~q can be interpreted as the probability that the item will be 
qi 

failed, if the predecessor i fails. 

A similar relation exists for the repair intensity, i.e., 

w (t) = E w . (t) ap(t) 
r all r, l. ap i ( t) 

(3.59) 

predecessors 
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( 

( 

The expected number of failures or repairs in (O,t) can be found by 

integrating Eqs. (3.58) and (3.59) as Eqs. (3.42) and (3.43) indicate. 

Several simple examples will illustrate the use of Eq. (3,58): 

AND gate (series system), using Eq. (3.47), 

= :E wf A (t) fl qA. (t) 
i ' i j J 

j:fi 

OR gate (parallel system, using Eq. (3,48), 

n 

1 - I: 
j=l 
j;'i 

qA. (t) + 
J 

n-1 n 

I: I: 
j=l k=j+l 
j;'i k:fi 

therefore for an OR gate with two inputs 

2-out-of-3 system, using Eq. (3.53), 

(3.60) 

(3.61) 

(3. 62) 

(3.63) 

The relations developed above assume that the probabilistic characteristics 

of the primary inputs are known exactly. As discussed in Section 2.B.5 though 

the parameters of the distributions are estimated from tests either as point 

estimates or in an interval with a certain confidence. In the latter case the 

question arises how the uncertainty about the primary input information is 

carried over to the probabilistic treatment of a complex logical structure. 

Rosenblatt (Ref, 125) gives a good introduction to this problem of confidence 

bounds for complex structures and the book by Mann, Schafer and Singpurwalla 

(Ref. 126) surveys the statistical techniques employed as well as an extensive 

list of references. 

Murchland and Weber (Ref. 111) utilize simple statistical relations to 

estimate the mean and the variance of the unavailability of a coherent structure 
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given the corresponding quantities for the primary inputs, From the mean and 

variance a conservative confidence bound is calculated for the unavailability 

with the use of Tchebycheff's inequality, Eq. (2,9), which we reproduce here 

P[m-kcr < X < m + kcr] ~ 1 - l_ 
k2 

(3.64) 

As it has been stated before, the unavailability of each item is a linear 

polynomial of the unavailabilities of its predecessors. Thus the mean of the 

item unavailability is found by inserting in the polynomial the average 

unavailabilities of the predecessors. For the variance we expand the polyno-

mial about the mean values of the variables according to the multinomial 

theorem, square it and we take expectations. For example, the output of an 

AND gate with two inputs has the polynomial (Eq. (3.47)) 

(3.65) 

The relation for the means is 

(3.66) 

To find the variance we write 

(3. 67) 

and upon squaring and taking averages the cross products vanish the final result 

being 

(3.68) 

Similarly for an OR gate we find 

(3,69) 

and 

(3.70) 
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Therefore, starting from the bottom of a tree and proceeding to the top with 

the use of the above relations the mean and variance are calculated. The 

method can be applied to simple trees with independent inputs which are either 

nonmaintained or in the steady state. When the components are maintained the 

authors discuss various methods of approach and in the case of repairable 

inputs they indicate how the mean and variance of the failure intensity can be 

calculated. The method is essentially the same as above, 

3.A.5 Solution Via Cut Sets. 

The notion of minimal cut sets (mcs) introduced in Section 3.A.2 and the 

probability relations of Section 3.A.4 can be combined to provide with a 

systematic and economical method of analyzing the probabilistic behavior of a 

logic diagram. The method consists of identifying the mcs 1 s, deriving the 

unavailability and failure intensity expressions for each mcs from those of the 

primary inputs and finally the corresponding quantities for the top event are 

determined from those of the mcs's. It should be noted that in practice we 

talk about cut sets whenever we study failures; strictly speaking, in a fault 

tree the combinations of components which can cause the top event to occur 

should be called path sets, since they render the top event true, We will 

follow the common usage. Furthermore, we will refer to logic diagrams in the 

form of trees, since any logic diagram can in general, be represented by a tree, 

All the structures are assumed coherent, i.e., only AND and OR gates are allowed. 

Identification of Minimal Cut Sets. 

For trees with relatively few inputs the mcs can be identified by inspec­

tion. Most often, however, such an approach is very inefficient, if possible 

at all, since the number of mcs increases very rapidly, as the complexity of 

the tree increases. There exist several approaches utilizing the computer as 

follows: 

229 



1. Deterministic and Monte Carlo methods (PREP code, Ref. 116) 

The mcs 1 s are identified either deterministically or by Monte Carlo 

simulation. In the deterministic method each input is failed individually and 

if the top event occurs that component is a mcs. The procedure is continued 

with the components failing in combinations of two, three etc. Each time the 

cut set is checked whether it contains another cut set in which case it is 

rejected. The method is reliable but it takes long computer times for large 

trees and usually it is stopped when the mcs's with one and two components 

have been found (if there are n primary inputs then the number of their combi­

nations taken kat a time is(~). Fork= 3 and n = 500 and assuming that it 

takes the computer 10-S min. to check each combination, the required time to 

check all of them is of the order of 103 minutes). 

In Monte Carlo simulation the components are failed randomly with times 

of failure chosen from their failure distribution. If, for example, the ith 

component has an exponential distribution, a random number r (0 $ r $ 1) is 

generated and the time of failure ti is computed from 

-Ai ti 
1-e r = ---:;---=-

-Ai T 
1-e 

(T = mission length, t. 
1 

$ T) (3. 74) 

Thus a set of times-to-failure is obtained for the components which are ordered 

in increasing order, i.e., 

... < t < T 
n 

The components are failed successively starting from the one with the smallest 

time to failure until the top event occurs. These components then form a cut 

set which is again tested against the already found cut sets, so that only the 

mcs 1 s will be determined. This procedure identifies first the mcsis which are 

most important for the system, since the use of Eq. (3.71) insures that 
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components with high failure rate are failed more frequently. By selecting T 

to be very small the times-to-failure are chosen from the uniform distri~ution 
Aiti ti 

thus the failure rates are unimportant (to see this we expand r = ---- = --) A.T T 
1 

The PREP code can handle trees with up to 2000 inputs and up to 2000 gates. 

2. Other Methods 

In Ref. 117 a method is presented, which determines the roes's utilizing 

the unique factorization theorem of prime numbers (that is, every natural 

number can be expressed as a unique product of prime numbers), Each primary 

input is assigned a prime number and each roes is represented by a unique product 

of prime numbers which then identifies the primary inputs of the roes, For 

example, in Fig. 3.12 the events x1 , x2 , x3 are assigned the prime numbers 

2, 3, 5 respectively. Working from the bottom we have 

event A = x1 x2 = 2 x 3 = 6 

event B = x1 + x2 = 3 + 5 (the summation is not carried out) 

TOP = A + B = 6 + 3 + 5 

but 3 is a factor of 6, so the latter is eliminated and we have 

TOP 3 + 5 

therefore there are two mcs 1s, {x
2

} and {x3}. 

This is the basis of the program ELRAFT, which also proceeds to calculate 

the unavailability of the TOP event, 

A method which proceeds from the TOP to the primary inputs by successively 

eliminating the secondary events is presented in Ref, 118, Each AND gate 

encountered increases the size of a cut set while an OR increases the number 

of cut sets. 
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Figure 3.12. Sample Fault Tree. 

232 ) 



Evaluation 

Having identified the minimal cut sets we can proceed and evaluate the 

unavailability of each mcs and its failure intensity. The relations derived 

in Section 3,A,4 are immediately used for this task (see also Ref. 119). 

Each roes C., i = l, .•• ,k, by its definition, is the product of all its 
1. 

inputs. Therefore, Eq. (3.47) for an AND gate yields the unavailability of 

Ci in terms of the unavailabilities of its inputs as 

qc .(t) 
i 

n q.(t) 
'E:C J 
J i 

(3. 72) 

(the notation jE:C. indicates that the product is to be taken over all the 
1. 

components of Ci). 

Similarly, for the failure intensity of C. we have a result analogous to 
1. 

Eq. (3.60), i.e., 

wf,C. (t) 
1. 

~(t) (3. 73) 

Since the top event is the union of the roes's, its probabilistic quanti-

ties can be calculated. E~. (3.48) is directly applicable for the unavailabil-

ity, i.e., 

(3.74) 

The bracketing procedure of Eqs. (3.50) and (3.51) can also be applied here. 

Spec~al care should be taken, when the unavailabilities of products of roes's 

are calculated, since one or more components may appear in more than one mcs. 

In this case the theorem of conditional probabilities should be used, i.e., 
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An upper bound to qT(t) can be found by utilizing the expansion (3.33), 

which here becomes (recall that what we call here a cut set is a path set in 

the theory of Section 3.A.2) 

k 
TOP = 1 - n (1-C.) 

j=l J 
(3.76) 

From Eq. (3.76) we get 

k 
q (t) $; 1 - f1 (1-qc. (t) 

T . 1 J= J 
(3.77) 

and we reason as follows: if the mcs 1 s did not have common components, (3.77) 

would be an exact equality, as it is readily seen, if the expectations of both 

sides of Eq. (3.76) are taken. The tight-hand side of Eq. (3.77) assumes that 

no such common components exist, thus in the case of common components, it 

overestimates the unavailability of the structure, hence the inequality sign 

follows. 

The failure intensity of the top event is given by expressions analogous 

to Eqs. (3.58) and (3.61). It is clear that the evaluation of the partial 

derivatives (Eq. (3.61)) of the unavailability polynomial (Eq. (3.74)) is quite 

complex. The general expression is 

wf T(t) ~ wf C (t) 
aqT(t) 

(3.78) 
aqc (t) ' all c ' . • 1. 

1. i 

where wf C (t) is as given by Eq, (3. 66) and 
' i 

aqT (t) k k-1 k 
1 - I: qc (t) + 1: !: qc c (t) 

k+l 
(3. 79) 

aqc (t) 
+ (-1) q llc (t) 

j=l j j=l m=j+l j m j =ri j i jfl j=ri m=ri 

Vesely (Ref, 119) proceeds to evaluate these terms as functions of the 

component unavailabilities. It is worth noticing that due to the smallness of 
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the unavailabilities upper and lower bounds can again be found for wf T(t). 
' 

An upper bound, which is usually satisfactory, is 

(3. 80) 

where the right-hand side is simply the sum of the failure intensities of the 

minimal cut sets (Eq·. (3. 66)). 

A computer code based in the above analysis is the companion to the PREP 

package, KITT-1 and KITT-2 (Ref. 116). 

KITT-1 calculates the unavailability and failure intensity of the minimal 

cut sets and the top event from those of the primary inputs. Primary failures 

are assumed exponential; the components may be non-repairable or repairable with 

either constant repair rate or fixed time-to-repair (see Sec. 2.D.3.). 

KITT-2 does the same calculations but it is a multiphase code, i.e. the 

characteristics of the components may change (arbitrarily) at certain times. 

Up to 50 phases can be handled. 

3.A.6 Simulation Techniques 

One of first methods of estimating the unavailabili.ty of the top event in 

large fault trees was by simulation on a computer. The method has already been 

applied in Sect, 3.A.5 to find the minimal cut sets. 

The idea of a Monte Carlo simulation is to generate random numbers and 

from these and the probabilities that the components are in a certain state 

(up or down) a set of random component states is generated, Then the tree 

logic is checked, the state of the top event is recorded and the process is 

repeated, Each such cycle is called a trial and their total number as well as 

the number of trials in which the top event occurs are used for quantitative 

analysis of the system. The principles of Monte Carlo simulation can be 

found in Refs. 8, 120 and 121. 
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The random numbers are generated by a computer algorithm. A frequently 

used method is the congruential multiplicative method. The random numbers are 

generated from the relation 

x = a x. 
1 

+ c (modulo m) 
j J-

(3.81) 

where m is an integer defining the period after which the numbers repeat 

themselves, a is a scale integer factor and c is an integer. The expression 

modulo m means that x. is the remainder of the division of (ax. 
1
+ c) by m. The 

J ]-

number m is chosen to be larger than the digit capacity of the computer and 

n 
usually m=2 , n=20 or 30. If we choose c odd and a=4k+l (k = integer) the 

period of the random numbers is m (and, as a consequence of the above choice 

of m, very long). Then the numbers x./m are uniformly distributed in the 
J 

interval (0,1). As a simple example, suppose that m = 23 = 8, c = 1, a= 5 

and we start with x = 2. Then 5 x 2 + 1 = 11 and since 11 = 8 + 3, the next 
0 

number is x
1 

= 3. Continuing this way we generate the sequence 

x = 2,3,0,1,7,4,5,2,3, etc,, 

with period 8. Dividing by m = 8 we scale the numbers in the interval (0,1), 

i.e., r=0.25, 0.375, 0, 0.125, 0.875, 0.50, 0.625, 0,25 etc, 

Consider now a fault tree with non-maintained primary inputs. From the 

random numbers r and the cumulative failure distribution F.(t) of each input 
J 

we generate a random time-to-failure for each by writing 

hence 

r = F.(T.) 
J J 
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-A. t 
If F. (t) 

J 
1 - e J we have 

T. 
1 ln(l-r) :::: 

J A. 
J 

but 1-r is also uniformly distributed in (0,1), thus we can generate T. from 
J 

T. =- , 1 ln r 
J /\, 

J 

(3. 83) 

Ordering the T. in increasing order the components are failed successively 
J 

starting from the one with the smallest T and proceeding until top failure occurs 

or a specified time has elapsed. This ends one trial and the process is 

repeated from the beginning. This procedure is employed by the program SAFTE-2 

(Ref. 105), which can handle up to 500 primary components with exponential 

failure distributions. The output yields the system MTTF and analyzes its 

distribution function. 

If the components are repairable, in addition to random times-to-failure 

the program generates random repair times for each component from its repair 

distribution. The random times are again ordered and each component is failed 

and repaired according to its corresponding times, until failure of the top 

occurs or the mission time has elapsed. This technique is utilized in the 

program SAFTE-1 (Ref. 105). Failures are exponentially distributed and 

repairs are normally distributed. The program calculates the MTTF, MTTR and 

related statistical quantities for the system. Another program along the 

same lines was developed by Crosetti (Ref. 122), Exponential failure times 

are again assumed but the repair model can be either the normal distribution or 

the fixed-time-to-repair model. The output includes the estimate of the failure 

probability of the system and contributions to it from the failure of subsystems. 
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If the components have reached their steady-state unavailabilities 

~(A/~A or AL/l+AT , see Section 2.D.3) their states are determined by 

comparing ~with r. Thus, if r ~ ~ the component is assumed failed and 

repeating the comparison for all inputs a state of the system is generated and 

the occurrence or not of the top event is checked (SAFTE-3, Ref. 105). 

When the random failure and repair times are calculated from Eq. (3.82) 

the process is called direct simulation. Rowever problems regarding the 

number of trials arise due to the smallness of the unavailabilities related 

to a fault tree (Ref. 123). If the top failure has occurred n times out of 

N trials, its probability is estimated by 

A n q =-
N 

(3. 84) 

A 

The variance of q is 

A A 
A2 q (1-q) 
cr" = N 

(3.85) 
q 

(binomial distribution), 

Suppose now that we wish. to estimate q to within ±10%, meaning that the 

sampling will continue until the standard deviation of the estimate q is less 

A 

than or equal td 10% of q. This leads to 

~ 
v~ =0.1~ 

A 

or using Eq. (3,84) and the approximation 1 '""tt ~1_, 

or 

n = 100. 
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Therefore the top failure must occur at least 100 times before the trials stop. 

If its probability is of the order 10-4 the number of trials should be 

N = -4 6 n/10 = 10 which is prohibitive in terms of running computer time. To 

overcome this difficulty the technique of importance sampling (Ref. 123) is 

employed. The random times are not calculated from the time distributions, 

Eq. (3,82), but from an artificial distribution which predicts higher failure 

probabilities for the mission time interval. The use of weighting factors in 

A A 

the calculation of q describes the results and an estimate of q is obtained in 

shorter computer times. Some deficiencies of the method are argued in Ref. 

124. The SAFTE programs and the one developed by Crosetti have utilized 

importance sampling. 

The advantage of Monte Carlo methods over the analytical approach of 

Section 3.A.5 is the greater flexibility. Special logic symbols (like priority 

gates, NOT gates et al.) can be handled, as well as other special features of 

the system regarding its operation and maintenance. Furthermore uncertainties 

in the input data can be included and their effect on the top event probability 

can be analyzed (Ref. 125). 

3.A. 7 Applications 

Block diagrams and fault trees have been used extensively in the literature 

of probabilistic safety and the purpose of this section is to give several 

references where detailed analyses are presented. 

One of the early computer programs which handled block diagrams was 

ARMM (Automatic Reliability Mathematical Model). The program selects combina-

tions of components which can cause system failure (i.e. cut sets) but those 

with a pre-specified number of components (e.g. 3 or 4) or less. Then it 

computes the reliability of the system (no repair is allowed) and the contribu-

tion of each failure mode and component to the system unreliability. Details and 
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applications to the reliability analysis of a reactor primary containment 

apd safety injection system are given in Ref. 127. 

In Ref. 128 block diagrams are employed to analyze a reactor automatic 

protective system. The system monitors a number of reactor parameters (e.g. 

temperature, pressure) and if they are within acceptable limits the sensors 

feed signals to the shutdown system which keeps the control rod actuators 

energized. In case the parameter limits are violated no signals are sent to 

the shutdown system and the control rods rapidly fall into the reactor. Two 

block diagrams are drawn for the two possible failures: the reactor is shut 

down while no parameter exceeds its limits (failed safely) and the reactor is 

not shut down while the monitored parameters are actually beyond the accept~ 

able limits (failed dangerously), The diagrams are reduced to simpler forms 

by combining series and parallel elements successively and the unavailability 

is evaluated. In addition, critical components are identified. A study of a 

similar system is given in Ref. 129. 

Snaith (Ref. 130) uses block diagrams to study the probability of failure 

per demand of an electrical supply system (Fig. 3.13). The 500 Mw(e) turbo­

alternator is connected to the 400 kv metwork and it also feeds the 11 kv 

reactor unit board through the two unit transformers. The two bus-section 

switches (5 and 6) divide the board into three sections of which the two outer 

ones feed three primary coolant circulators (GCl, GC3, GC5 and GC2, GC4, GC6) 

each. If a loss of supply via the transformers occurs the underfre~uency 

relays (1 and 2) detect it and the two gas turbines (4 and 7) start automatically 

feeding the two outer sections of th.e board with power and one gas circulator 

on each (GCl and GC2) starts running again, These two circulators are sufficient 

for cooling of the reactor and all other connections with the two sections of 

the board are removed. The logic diagram for the successful performance of the 
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TURBINE 
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15 

GAS CIRCULATORS 

Figure 3.13. Diagram of Electrical Supply System. (Ref. 130) 
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system is shown in Fig. 3.14. The component data are presented in Table 3.3. 

Since the maintenance period is one year a calculation was carried out to 

estimate how the probability that the system will fail when needed (per demand) 

increases between two inspections. This was done with the use of the program 

NOTED and the results are shown in Table 3.4. A detailed study of an 

emergency core cooling system using the same approach as in the previous 

example is presented in Ref. 131. 

The deductive logic of the fault tree has made it a useful and popular 

tool in various fields. The aircraft industry was one of the first to utilize 

fault trees in safety studies. Feutz and Waldeck (Ref. 132) present a detailed 

fault tree for the top event 11 aircraft destroyed." The tree was solved by 

simulation and the probability of the top event occurring as well as the 

critical paths leading to it were calculated, Based on this information the 

design was modified to increase safety and a new fault tree was drawn and 

solved. The authors discuss the problems which arise in the construction and 

solution of a fa~lt tree. 

Crosetti and Bruce (Ref. 133) show how the fault tree analysis can be 

proven useful in system studies. From the nuclear industry they summarize the 

results of Cole (Ref. 134) concerning th.e reliability of th.e fog spray system 

of Hanford's N-Reactor. Then they proceed to discuss the possibilities of 

using fault trees in reliability and optimization studies of communications 

systems, in the automobile industry, in freeway pla~ning and in eva! tating 

marketing alternatives. 

Salvatori (Ref. 135) uses a fault tree to establish acceptable probabilities 

of occurrence for the events which may cause a dangerous situation in a nuclear 

power plant (Fig. 3.15). The top event is called 11 limit consequence status" 

and it represents the event which, when reached, can be classified as a 
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Figure 3.14. Reliability Diagram for the Electrical Supply System of Figure 3.13. 
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TABLE 3.3. COMPONENT DATA FOR THE LOGIC DIAGRAM OF FIG. 3.14. 8 IS THE FAILURE RATE PER YEAR, 

Item 
No. 
--
1, 2 

3, 8 

5, 6 

4, 7 

13, 14 

9, 10, 
11, 12 

17, 18 

15, 16 

19, 20 

T IS THE INSPECTION INTERVAL AND T IS THE MEAN REPAIR TIME 
c r 

Component 

Under frequency relay 

Transformer circuit 
breaker (11 kV) 

Bus-section circuit 
breaker (11 kV) 

Gas turbine 

Gas turbine circuit 
breaker 

Circulator circuit 
breaker 

Circulator circuit 
breaker (i.e., pre­
selected c~cculators) 

Bus-bar 

Circulator 

8 

0.01 

0.005 

0.005 

0.02 

0.005 

0.005 

0.006 

Tc 
(years) 

1 

1 

1 

1 

1 

1 

1 

Tr 
(years) 

4 X 10-4 

4 X 10-4 

4 X 10-4 

4 X 10-4 

4 X 10-4 

5 X 10-3 

Remarks 

Faults causing failure to trip on demand 

Faults causing failure to trip on demand 

0.023 probability of failure to start 

Faults causing failure to close on demand 

Faults causing failure to trip on demand 

Faults causing spurious opening 

Faults per bus-bar section 

0.01 probability of failure to start 
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TABLE 3.4. PROBABILITY OF FAILURE PER 

DEM~ TO RESTORE TWO GAS CIRCULATORS 

Probability 
Time of failure 

(years) per demand 

o.o 0.063 

0.2 0.080 

0.4 0.096 

0.6 0.111 

0.8 0.126 

1.0 0.141 
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FREQUENCY OF 
"LIMIT CONSEQUENCE" STATUS 

10"6/YEAR 

FREQUENCY OF: PLANT EVENTS PLUS 
FAILURE OF RELATIVE PROTECTION 

8 X 10"7/YEAR 

FREQUENCY OF: DESIGN PLANT EVENTS 
PLUS FAILURE OF 
RELATIVE PROTECTION 

8 X 10"7/YEAR 

Figure 3.15. Fault Tree for the Assessment of Acceptable Probability Levels 
for Potentially Hazardous Events (Ref. 136). 
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FREQUENCY OF: CORE 
TRANSIENTS PLUS FAILURE 
TO REMOVE DECAY HEAT 

2 X 10-7/YEAR 

PROBABILITY OF FAILURE 
TO REMOVE DECAY HEAT 

2 X 10-7/DEMAND 

FREQUENCY OF: CORE 
TRANSIENTS PLUS FAILI..iRE 
OF CORE HEAT 
REMOVAL SYSTEMS 

4 X 10"7/YEAR 

FREQUENCY OF: CORE 
TRANSIENTS PlUS FAilURE 
TO SCRAM PLUS FAILURE 
TO REMOVE CORE HEAT 

2 X 10-7/YEAR 

PROBABILITY OF FAILURE 
TO TRIP RODS 

2 X 10-5/DEMAND 

PROBABILITY OF FAILURE 
TO GENERATE TRIP SIGNAL 

1 X 10-5/DEMAND 

----------------------------------------------' A 

Figure 3.15. con't. 

(4} 

(SA} 

(7A) 
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FREQUENCY OF: STRUCTURAL FAILURES 
PLUS FAILURE OF PROTECTION 

4 X 10·7/YEAR 

PROBABILITY OF FAILURE 
OF SIGNAL GENERATION 
FUNCTION 

2.3 X 10.6/DEMAND 

PROBABILITY OF NOT 
GENERATING 
INITIAL SIGNALS 

1.2 X 10·6/DEMAND 

FREQUENCY OF: SECONDARY SYSTEM PIPE 
RUPTURE PLUS FAILURE OF 
ENGINEERING SAFEGUARDS 

1.3 X 10·7/YEAR 

PROBABILITY OF FAILURE 
OF ENGINEERING 
SAFEGUARDS 

1.3 X 10·4/DEMAND 

PROBABILITY OF FAILURE 
OF CORE SAFEGUARDS 

7 X 10·5/DEMAND 

PROBABILITY OF FAILURE 
OF CONTAINMENT 
SAFEGUARDS 

7 X 10·5/DEMAND 

Figure 3.15. con't. 
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PROBABILITY OF FAILURE OF 
SIGNAL GENERATION FUNCTION 

2.3 X 104 /DEMANO 

PROBABI LITV OF NOT 
GENERATING INITIAL SIGNALS 

1.2 X 10'4/0EMAND 

FREQUENCY OF: PRIMARY SYSTEM 
PIPE RUPTURE PLUS FAILURE OF 
ENGINEERING SAFEGUARDS 

1.3 X 10'7/YEAR 

PROBABILITY OF FAILURE 
OF ENGINEERING 
SAFEGUARDS 

1.3 X 10'3/DEMAND 

PROBABILITY OF FAILURE 
OF CORE SAFEGUARDS 

7 X 10'5/DEMAND 

PROBABILITY OF FAILURE 
OF CONTAINMENT 
SAFEGUARDS 

7 X 10'4/DEMAND 

Figure 3.15. con't. 
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disaster. -6 Its acceptable probability level is set at 10 per year, which is 

deemed to be of the same order as natural disasters. Using the deductive logic 
) 

of the fault tree the chains of events that can lead the reactor to its limit 

consequence status are developed and judgment is applied to assign acceptable 

probability levels for each. If for a specific plant the probability of an 

event is greater than the level established above, special care should be taken 

to reduce it below the limit. As an example the author mentions the results of 

a study concerning the probability of a missile generated by a disk rupture hit-

ting a critical plant component. At design speed this probability was esti-

-12 -10 mated to be 10 /yr and at overspeed 10 /yr. The accident is classified as 

a non-design plant event, thus its probability of occurrence should not exceed 

-7 the value 10 /yr (Fig. 3.15); since the estimated probabilities are much 

smaller than this limit, it is concluded that it is not necessary to make pro-

visions in the plant design to contain the consequences of this accident. 

Balfanz (Ref. 136) suggests the use of fault trees to estimate the failure 

rates of mechanical and electrical equipments, The method can be used as a 

supplement of the statistical analysis of the failures of identical items or 

as a method of estimation when statistical data are missing. Stewart and 

Hensley (Ref. 137) study a chemical plant in which oxygenated material is 

produced from oxygen and hydrocarbon, Figure 3.16 shows the physical process 

that takes place. The hydrocarbon and the oxygen are led into the reactors to 

produce the oxygenated material under high temperature and pressure. The rest 

of the cycle is self-explanatory. The objective of the study is to design an 

automatic protective system to prevent explosion. The fault tree of Fig. 

3.17 was drawn to identify the events that could lead to explosion and whlch 

parameters should be monitored by the protective system. The numbers in the ) 

figure show the parameters selected. 
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Figure 3.16. Process Diagram for a Chemical Plant (Ref 137). 
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Figure 3.17. Fault Tree for the Chemical Plant of Figure 3.16 (Ref 137). 
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In Ref. 138 Griffin utilizes the visibility that the method provides to 

compare the relative safety of two alternatives for the containment system of 

the Heavy Water Organic Cooled Reactor. His second application concerns the 

increase of the risk that the public is subjected to due to the existence of 

a sodium facility in a certain area. Finally, in the last application a fault 

tree is drawn to analyze the risk that the owner of a test facility complex 

assumes due to the potential of damage to the population, the environment etc. 

Risk is defined as the product of th.e probability of damage times its con­

sequences. The tree is shown in Fig, 3.18. 

The safety systems of a nuclear power plant have been popular subjects of 

investigation via fault trees. Hortner et al. (Ref. 139) estimate the unavail­

ability of all the systems (mechanical, protective and power supply) that are 

required to function in the case of rupture of the primary coolant line in a 

PWR. The results for the overall system and for each subsystem studied 

separately (as it is usually the case in th.e literature) are shown in Table 

3. 5. It is seen that the total unavailability is greater than the sum of 

the unavailabilities from the independent calculations. This is due to failures 

in the integrated system, which are missed in the separate calculations, i.e., 

failures due to weak points resulting from the interconnection of the 

subsystems. 

Bustl (Ref. 140) gives an overall view of the problems which arise when 

reliability techniques are applied on nuclear power plants at the component, 

equipment and system level. Specific examples include the actuator command 

unit which controls a motor valve and the emergency power supply to the ECCS. 

Gangloff et al. (Ref. 141) outline a study of the unavailability of the 

containment spray system of a PWR. Identification of the minimal cut sets 
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TABLE 3.5 UNAVAILABILITIES OF THE SYSTEM DEMANDED TO CONTROL A LOCA. 

ASSUMED PROBABILITY OF LOSS OF STATION POWER SUPPLY 0.1 (Ref. 139) 

System 

Over-all Safety System 

Mechanical System 

Protection System 

Electrical Power Supply 
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Unavailability 

2,6 X 10-4 

0.39 X l0-4 

0.50 X 10-4 

0,39 X 10-4 
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) 
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reveals that no single failure could result to system failure. The probability 

of no spray is estimated to be 9,982 x 10-5 (per demand) and that of inadvertent 

-7 spray 9.70 x 10 , 

Erdmann, Okrent et al. (Ref. 142) study th.e loss of isolation between the 

high and low pressure portions of th.e residual heat removal system of a BWR. 

A simplified schematic of the system is shown in Fig. 3.19. The RHR system is 

a low pressure system (400 psi) directly connected to the primary system which 

is at higher pressure (1200 psi). Its objectives are to remove decay and 

residual heat from the reactor so that refueling and servicing can be performed, 

to supplement the spent fuel cooling system capacity when necessary to provide 

additional cooling, to condense reactor steam so that decay and residual heat 

may be removed if the main condenser is unavailable following a reactor scram 

and it forms an essential part of the low-pressure core flooding system which 

is part of the ECCS. In Fig, 3.19 the valves shown in black are normally 

closed. Failure of isolation can occur if the following groups of valves fail. 

{F019, F022, F023}, {F050, F015}, 

{F009, FOOlS, F006B or F006A} • 

A fault tree was built to analyze the event "Loss of isolation on leg 111 

and it is shown in Fig. 3.20. Seven schemes were analyzed as follows: 

Scheme 1: F019 and F022 are required to function properly while F023 

is non-existent (i,e., open). Only failure data from nuclear experience are 

used. 

Scheme 2: Valve F019 is not included and again nuclear data is used, 

Scheme 3: The original design is considered with all available data. 

Scheme 4: The pressure interlock on valve F022 is removed and nuclear 

data is used. 
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Scheme 5: Identical to Scheme 3 but only nuclear data is used. 

Scheme 6: Slip clutches are added to valves F022 and F023, nuclear data 

is used. 

Scheme 7: Identical to Scheme 6, but the slip clutches are replaced by 

limited torque motors. 

The failure rates are shown on Table 3.6. A20 means that 20% of the data 

are smaller than the selected values. Similarly for Agot The logarithmic 

mean A is calculated from 

The fixed-time-to-repair model was employed with. ~=3 months. Since the study 

is for one year, no repair is equivalent to setting T = 12 months. The tree 

was solved with the aid of the code EKKFA (Ref. 143) which is a modification 

of the PREP and KITT codes. 

The critical minimal cut sets for Sch.eme 3 were found to be: 

1. random failure of valves F019, F022 and F023, 

2. random failure of valve F019 and inadvertent opening by either 

the operator or the automatic control system of valves F022 and F023, 

3, random failure of valves F019 and F022 and pipe failure outside the 

primary containment between the F022 and F023 valves, 

The results for the various schemes are shown on Table 3.7. 

3.A. 8 Event Trees 

The event (or flow, or accident-process) tree is a logic diagram similar 

to the fault tree with one fundamental difference: the logic is inductive, 

i.e. starting from an initiating event the tree proceeds to uncover its con-

sequences. I . . '1 h d . . f d • . 1 . 144 . t ~s s~m~ ar to t e ec~s~on tree o ec~s~on ana ys~s, ~n 

safety studies, however, the event trees do not, as a rule, include any decisions. 
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TABLE 3,6 FAILURE RATES FOR THE FAULT TREE OF FIG, 3.20 (Ref. 142) 

Automatic Control System--Spurious 
or Improper Signal 

Clutches 

Contaminants--Failure Event Due to 
Contaminants 

Circuit Breaker--High Current 

llesign Err,or 

Instrumentation 
A) Detectors or Transducers 

B) Recorders, Display Units, etc. 

Interlocks--Relay or Switch 

Maintenance Errors 
A) Installation 

B) Modification 

C) Operational or On-Line 

D) General Non-Specific 

Operator. Errors 

Pipe Rupture--Serious Leaks 

Power Failures 
A) Primary 

B) Standby 

C) Power Supplies (H.V. or L.V.) 

Pump Failures 

Relay--Low Current 

Valve--Isolation or Throttle 
A) Mechanical 

B) Actuation 

C) Non-Specific Ca,uses 

Valve--Check 

Valve--Safety 

Valve--Relief 

>-20 

6,7 X 10-8 

7,0 X 10-8 

1.0 X 10-6 

2.0 X 10-7 

6.0 X 10-6 

2.5 X 10-6 

5.0 X 10-7 

2,0 X 10-8 

5,0 X 10-8 

2,0 X 10-ll 

6,0 X lo-6 

2,0 X 10-7 

3,0 X 10-6 

l.OX 10-7 

5,0 X 10-7 

5,0 X 10-7 

8.0 X 10-7 

3.0 X 10-7 

Nuclear Data 
X >-eo 

l,lX 10-7 2.1 X lo- 7 

2.5 X 10-7 0.9 X 10-6 

l.OX 10-5 1.0 X lo-4 

2.4 X 10-7 3,0 X 10-7 

1.6X 10-5 4,0 X 10-5 

9.3 X 10-6 3.5 X 10-5 

3,0 X 10-6 2,0 X lo- 5 

5,1 X 10-s 1.3X 10-7 

1. 7 X 10-7 5,8 X 10-7 

1.5 X 10-lO l.Ox 10-9 

8.2 X 10-6 l.lX 10-5 

2,0 X 10-6 1.8X 10-5 

9.2 X 10-6 2.8 X 10-5 

3,0 X 10-7 l.OX 10-6 

2,5 X 10-6 1.1 X 10-5 

2,5 X 10-6 1.0 X 10-5 

3.3 X 10-6 1.4 X 10-5 

1.3X 10-6 6,0 X 10-6 
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All Data 
>-20 X ARO 

2,0 X lo-7 5,5 X 10-7 1.6X 10-6 

7,0 X 10-8 2,8 X lo- 8 1.1 X 10-6 

l.Ox 10-6 4,0 X 10-5 2.0 X 10-3 

2.0 X lo-7 2,4 X 10-7 2,5 X 10- 7 

8,0 X 10-6 2,2 X 10-5 5,6 X 10-5 

4,5 X 10-6 1.5 X 10-5 5,2 X 10-5 

5,0 X lo-7 3,0 X lo-6 2.0 X 10-5 

2,0 X 10-8 1.4X 10-7 8,0 X 10-7 

5,0 X 10-8 1. 7 X 10-7 5,8 X 10-7 

2,0 X 10-ll 1.5 X 10-10 l.OX 10-9 

6,0 X 10-6 8.2 X 10-6 l.lX 10-5 

2,0 X 10-7 1. 2 X 10-5 7.0 X 10-4 

7.0 X 10-7 1.2 X 10-5 2.0 X 10-4 

1.9 X 10-7 1.7 X 10-6 1.6 X 10-5 

5.6 X 10-7 3.0 X 10-6 1.5X 10-5 

5,8 X lo-7 3,0 X 10-6 1.2 X 10-5 

t.ox 10-6 4.3 X 10-6 1.9 X 10-5 

5,0 X 10-7 2,5 X 10-6 1.2 X 10-5 
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TABLE .3. 7 FAILURE PROBABILITIES FOR THE VARIOUS SCHEMES 

OF THE FAULT TREE OF FIG. 3.20 (Ref. 142) 

Description of Schemes Failure Probabilities per Year 

Q 

1. Modified Design (One Check and 
One Isolation Valve)--Nuclear 
Statistical Data Used 

A) No Repair 2,0 X 10-3 1.4X lo-4 l.OX 10-5 

B) Repair 9,4 X 10-4 6.7 X 10-5 4.6 X 10-6 

2. Modified Design (No Check Valve)--
Nuclear Statistical Data Used 

A) No Repair 1.2 X 10-3 1.2X 10-4 1.3X 10-5 

B) Repair 3.1 X 10-4 2.3 X 10-5 3.5 X 10-6 

3. Original Design--All Statistical 
Data Used 

A) No Repair 4.7 X 10-3 5.8 X 10-5 7.2 X 10-7 

B) Repair 7.8 X 10-4 l.OX 10-5 1.5 X 10-7 

4. Modified Design (Pressure Inter-
lock on One Valve Only)--Nuclear 
Statistical Data Used 

A) No Repair 8.1 X 10-5 2.0 X 10-6 4.9 X 10-8 

B) Repair 1.9 X 10-5 4,6 X 10-7 l.lX 10-8 

s. Original Design--Nuclear Statis-
tical Data Used 

A) No Repair 7.8 X 10-s 1.8X 10-6 4.2 X 10-8 

B) Repair 1.4X 10-5 3.3 X 10-7 8.1 X lo-9 

6. Modified Design (Slip Clutches)--
Nuclear Statistical Data Used 

A) No Repair 1.3X 10-5 2.0 X 10-7 4.0 X 10-7 

B) Repair 1.5X 10-6 3.0 X 10-8 4.6 X 10-10 

7. Modified Design (Limited Torque 
Motors)--Nuclear Statistical 
Data Used 

A) No Repair LOX 10-5 1.6 X 10-7 3.0 X 10-9 

B) Repair LOX 10-6 2.0 X 10-8 4.0 X 10-lO 

( 
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The merits of event trees are similar to those of fault trees: they are 

useful visual aids for understanding the consequences of an event, critical 

chains of events can be readily identified and simple probabilistic calculations 

can be performed. 

Event trees are particularly useful in a probabilistic assessment of the 

risk from a power plant. In contrast to the design basis accident approach, 

where a maximum credible accident is postulated and the plant is designed to 

limit its consequences under the assumption that all the relevant parameters 

are unfavorable (worst case analysis), the current philosophy is not to 

differentiate between credible and incredible accidents, but to assign prob-

abilities to all conceivable accidents and analyze their consequences via 

event trees. In this manner some measure of risk can be established which can 

be compared with the acceptable criteria. Details on this line of thought are 

given in Refs. 145, 146 and 147. 

The graphical representation of an event tree is much simpler than that 

of fault trees, since no special symbols are used. Several examples will 

illustrate the methodology. 

Pugh (Ref. 148) discusses the application of event trees on reactor 

systems (scientists of UKAEA usually call the.m fault diagrams or fault trees). 

A typical event tree in simplified form is shown in Fig. 3.21. The author 

proposes that for the initiating event in addition to its frequency of occur-

renee, the trip signals resulting from the detectio~ of the fault shuuld be 
~ 

identified for better coordination between the designer and the safety analyst. 

On the left of the diagram the sequence of protective systems that will be 

required is shown, The two branches of the tree which originate from each 

junction correspond to the two mutually exclusive events: "the system functions" 
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and "the system fails." In an application the corresponding probabilities 

(usually per demand) should be known. An additional convention of the author 

is that branches on the left represent successful performance of the system. 

Thus the sequences of events leading to the points 5,7,12 and 14 are considered 

safe (the reactor is shut down and is sufficiently cooled). The points 8,9, 

15,16 and 17 should be examined more carefully to assess the potential damage 

(e.g., if the system reaches point 16 the reactor is shut down but the coolant 

circuit pressure is not reduced thus a break of the circuit will occur). The 

probability of the system state represented by each end-point can be found by 

multiplication of the probabilities of occurrence of the events which lead to 

that point. The author proceeds to apply the method to initiating events that 

can occur in a heavy water reactor. Figure 3.22 shows two such applications 

(the negative numbers at each end-point are the powers of ten which give the 

probability of that state per year), 

Doron and Albers (Ref, 149) use event trees to find the possible sequences 

of events that may occur after a loss of coolant accident in a PWR. The tree 

is shown on Fig. 3.23 with the annual frequency of each event and of each 

branch leading to the end-points 1-22, The authors then give the estimated 

activity released (in Curies) for each final state of the system along the 

lines that Farmer proposed in Ref. 145. The next column in the figure shows 

the product of the activity release times the frequency of the final state 

(Curies/year) and can be used as a measure of the risk from the plant. As it 

) 

) 

is shown on Figure 3.23 the most critical branches are 18 and 21. ) 

The loss of coolant accident and the handling of related problems via 

event trees in a BWR is the subject of Ref. 150. 
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INITIATING TYPE OF NORMAL EMERGENCY PROBABILITY CONTAINMENT ANNUAL CURIES 1131 MEAN ANNUAL BRANCH 
EVENT LOCA POWER POWER OF N PUMPS FAILURE FREQUENCY RELEASED SEVERITY NUMBER 

AVAILABILITY AVAILABILITY STARTING PROBABILITY OF BRANCH C1/VR 

5 PUMPS 
FAILS 10·5 - l--9 X 10·10 - t--7 X 106 - -0.006 1 

0.95 
O.K. -1.0-1--9 X 10·5 --r-- 20 - -0.002 2 

FAILS 5X 10·4 
4 PUI\lPS 

1--2.3 x 1o·9 - t--7 X 106 - ~0.016 3 

0.049 

AVAILABLE 
O.K. 0.9995- -4.6 X 10·6 - j----20 - 1-- 104 4 

0,95 
FAILS 0.01- f-- 1 X 10·9 

3 PUMPS 
- f--7 X 106 - r-- 0.007 5 

10'3 O.K. 0.99-r-1x1o 7 - 1--20 - ··- 104 6 

2 PUMPS 
~FAILS 0.3-1--3 X 10· 10 - l--7 X 106- -0002 7 

105 
O.K. 0.7-r-· 1 x 1o·10 - -20 - r-- 10'4 8 

RUPTURE OF 
MAIN COOLANT 
PIPE 

1--5 X 10·11 - 106- 104 .01 FAILS 10·5 - f--7 X - 9 
5 PUMPS 

0.95 
O.K. ·1.0- f--4.7 X 10·6 - ·- 20 - 1-- w-4 10 

FAILS [ixlo-4. f--1.2 X 10·10 - j-- 7 X 106 - -- 0001 11 
AVAILABLE 4 PUMPS 

0.9999 0.049 
O.K 0,9995-t- 2.3 X 10·7 - t--- 20 - ·- w-4 12 

FAILS O.D1 - l--5 X 10·11 - j--7 X 106 - t- 104 13 
MAJOR LOSS FAILS 3 PUMPS 

OF COOLANT 0.05 10-3 
O.K. 0.99-t-5 x 10·9 - t--20 - t-· 10'4 14 ACCIDENT 

0.01 PER YEAR 

FAILS 1.0 - r-o - t-- 7 X 106 - t-0.004 15 
FAILS 0 PUMPS 

10'4 1.0 
O.K. 0 - t-5 x 10·10 - t--20 - t--o 16 

2 OR MORE 
FAILS 0 - r- 0 - t--7 X 106 - t--O 17 

AVAILABLE 

B 0.95 •1.0 
1 Lo.K. 1.0-f-9.4 X 10'3 - l--20 - 18 RUPTURE OF 

CONNECTING 
LINE 

f--7 X 106 -0.99 2 OR MORE 
FAILS 0 - -o - r-- 0 19 

AVAILABLE 

0.9999 -1.0 
1.0-c- 5 X 104 - !--20 - l--0.010 O.K. 20 

FAILS 

0.05 
-s x 10<1 !--7 X 106 - B FAILS 0 PUMPS 

FAILS 1.0 - - ::J 10'4 1.0 
O.K. 0 - c-O - :---20 -:--o 

(TOTAL = Q.58 Ci/YRJ --

Figure 3.23. Event Tree for a Loss of Coolant Accident of a PWR (Ref. 149). 
) 
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3.A. 9 Qualitative Methods 

The methods discussed here are qualitative and inductive in nature and 

they form an integral part of a safety analysis. They usually precede a 

fault tree study and their conclusions are of great help in the construction 

of the fault tree, A survey of the various methods is done by Balfanz in 

Ref. 151. 

Although different names are given to these methods one could simply say 

that they are the natural approach an analyst with common sense would take in 

order to understand the system and its safety aspects. Thus the preliminary 

hazard analysis identifies the sources of energy which should be under control, 

like pressure tanks, fuels, etc.; the operational hazard analysis examines 

the functions and safety of the personnel employed in the plant, and so on. 

Among the qualitative methods the one that finds extensive use is the 

failure modes and effects analysis (FMEA). As the name suggests, the analysis 

identifies the failure modes of the components of the system (all or the ones 

that are judged to be critical) and the effects that these may have upon the 

subsystem to which the comvonent belongs and the system as a whole. For a 

systematic FMEA blank forms are provided on which as much information about 

the component is reported as it is deemed necessary and, of course, possible. 

As an example of FMEA Table 3.8 shows an application on a hand valve (Ref. 151). 

This is only one possible form and depending on the specific system under 

study additional columns can be used to enhance the amount of information given 

(like effect on personnel, corrective actions etc.). It is clear then how 

useful the FMEA can be, if done at the right time, in suggesting design modifi­

cations and in helping to build a fault tree for an unfavorable event. 
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T/\.BLE 3.8 FAILURE MODES AND EFFECTS ANALYSIS OF A HAND VALVE (Ref. 151) 

Name of Operat4>g Fa~lure Mo~e F~ilure FAilure Repair Effects on Input Effects on System 
Structural State Cause rate Time and Output of 
Part (hr-1) (hr) Structural Part 

) 

Valve Closed Opens incompletely Breakage of 0,5 X 10-6 8 Complete fa! lure No pressure in 
15 unintentionally valve drive of lock system 

Opens partially Leakage in 3 X 10-6 24 Slight internal Pressure drop in system, 
unintentionally valve seat lea \<age follow up feed through 

regulation 

Does not open Valve drive 3 X 10-6 
24 Chocking effect Delayc4 pressure relief 

completely sluggish due to valve i:n sy~tem 
(rusted) 

Do.e~ no.t ope.n Blockage 5 X 10-6 8 No pressure no pressure relief in 
of drive relief via valve system 
or ~tor 
defective 

Open Closes com.Pletely Sectional 0,8 X 10-6 8 Blockage of Impermissible pressure 
inintentionally lock due to pressure medium build up in system 

broken valve 
cone 
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Some quantitative results can be determined from the FMEA showing the 

probability of occurrence of each failure mode and thus ranking them according 

to their importance. Details on this approach (criticality analysis) may be 

found in Ref. 152. 
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3.B. COMMON MODE FAILURES 

A fundamental assumption of the fault tree analysis is that the failures 

of the primary components are random independent events which are described 

by exponential distributions. Some dependencies among redundant components 

may be predicted by changing the failure rates of the working components when 

some failures have occurred, but still the phenomenon is of random nature. A 

survey of the analyses performed on real systems and subsystems reveals that 

the degree of safety achieved against these random failures is acceptable. 

The reason behind this is that highly redundant systems are employed to per­

form a certain function. 

However a system is not subject to random failures only but also to a 

different type of failures, called common mode failures, for which the methods 

we have presented are not applicable. Failure of many components due to a 

single cause is classified as a common mode failure. The problem is quite 

vague and general as stated in this definition and quantitative methods for 

handling it are lacking; the approach taken by safety analysts is qualitative 

and it is concerned with the classification of the various types of common 

mode failures into broad categories and based on this preventative measures 

are suggested (Refs. 153, 154 and 155). These categories are related to the 

cause of such a failure as follows: 

1. Functional Deficiency. 

The instrumentation used to monitor a certain variable is not appropriate 

for the intended use and it provides with wrong information. The conditions 

under which a system is supposed to operate are not well understood or they 

change unpredictably thus rendering the system inadequate. This type of a 

failure clearly has nothing to do with failure of the hardware itself and is 
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of systematic type in complete contrast to the random component failures which 

are usually encountered in reliability analyses. 

2. Design Deficiency 

Similar components have not been designed or manufactured properly. 

Equipments or subsystems thought to function independently actually have a 

common element failure of which can cause a common mode failure, 

3. Maintainance Error 

This category includes all errors that human operators may make regarding 

testing, repair, calibration and operation of the equipments of a system. 

4. External Environment 

Failures can be induced by fires, explosions, floods, earthquakes, 

tornados and other major external events. In addition other causes less 

dramatic but of importance may be unfavorable changes in the operating environ­

ment, such as accumulation of dirt and/or dust, high temperatures, humidity, 

vibration, etc. 

The recommended measures against common mode failures are naturally 

based on different form8 of diversity. The most important one which offers 

defense for all the previous categories is functional diversity by which more 

than one plant parameters are monitored to warn that an unfavorable situation 

is developing. Functional diversity should be combined with operational 

administrative diversity (more than one person ~hould independently do and 

review personnel actions), equipment diversity (equipments of different types 

should be used to perform a certain function), physical diversity (redundant 

components should be physically separated) and design administrative diversity 

(reviews of the design and construction procedures). Although it is clear that 

such general recommendations are useful in reducing the probability of common 

mode failures, they are far from the quantitative methods of estimating 
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probabilities of failure due to random causes and the improvement of reliability 

due to redundancy, testing, etc. 

A more systematic way of investigating common mode failures is described 

by Gangloff and Franke (Ref. 155) and Gangloff (Ref. 156). Fault trees (or 

other methods) are utilized to identify the combinations of events that can 

cause system failure (i.e., the minimal cut sets). From this information and 

the previous classification a table is built of the possible common mode fail­

ures of the system. Then the preventative measures are identified and each 

possible common mode failure is examined in detail to check whether it can be 

safely assumed that its likelihood of occurrence is very small. The method is 

of course, qualitative. Table 3.9 shows the format used to identify the common 

mode failures for a reactor protection system. 

Epler (Ref. 157) uses the data on common mode failures that occurred at 

Oak Ridge National Laboratory to produce some numerical results and then make 

comparisons with random failures. The failures are described on Table 3.10. 

In addition to their causes the failures are also classified according to their 

rate of occurrence (instantaneous failures are those which occur so quickly 

that the operator does not have time to discover them and take the necessary 

steps to limit them). A further classification is with regard to whether the 

common mode failure was actually completed. The table shows that only 3 fail­

ures were completed while 7 were arrested in progress, result which verifies 

the usefulness of the preventative measures. Epler proceeds to estimate the 

rate of occurrence of common mode failures by estimating that the total number 

of subsystem years is 300 and with 3 failures having occurred the rate is 0.01 

per subsystem year. To make comparisons with random failures it is assumed 

that the protection channels fail at a rate of 0.1 per year (random failures) 

and that the test interval is 0.1 year. The probability that a common mode 
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TABLE 3.9 POSSIBLE COMMON MODE FAILURES IN A REACTOR 
PROTECTION SYSTEM (Ref. 155) 

EXTERNAL NORHAL DESIGN OPERATION AND EXTER..''lAL 
ENVIRONHENT DEFI- MAINTENANCE PHENOMENA 

CIENCY ERRORS 

... 
u 
i:'i 
~ ... 

REQUIRED FAILURE u z eo ... ... 
(EQUIPHENT AND !:l iil u ~ ~ 

~ 
... H 

HODE OF FAILURE) H ... '-' i:'i z z u z {/) H 

~ H ~ z z H ~ ~ '" ~ ... 0 H 0 
H "' ffi ~ 

H Vl H H 

~ ~ 
... 

~ 
... '" ~ :;J N H "" ... 

~ z H ,_, 
"" ~ ~ ~ 

0 u z ... ... "" '" "' Vl '" H H '-' z "' H w "' Vl 0 0 

~ '" 0 :;J "" ~ "' ~ lil' ~ 0' 
H u 0 H ~ 

,_, 
"' "' !;;] ~ 

Vl 

~ 
u i;l ~ ~ 

u "' ~ iii "' 0 

~ H "" "' Vl ~ E:; ~ "' '" 0 
H ~ H ,_, !'§ 0 ~ "' z 0 H ~ "' H ;.. "' u "' H 0 u 0 H H "' "' 

TRIP BREAKERS 
(DB-50 CIRCUIT BREAKER) FAIL TO X X X X X X X X X X X X X X 
OPEN CIRCUIT ON SIGNAL 

TRIP RELAYS 
(BFD INDUSTRIAL CONTROL RELAY) X X X X X X X X X X 

FAIL TO OPEN CIRCUIT ON srcmAL 

LOGIC RELAYS 
(BF INDUSTRIAL CONTROL RELAYS) X X X X X X X X X X 
FAIL TO OPEN CIRCUIT ON SIGNAL 

ANALOG CHANNELS 
(DIVERSE EQUIPMENT) FAIL TO X X X X X X X X X X X X X X X 
REHOVE POWER TO RELAY COILS 

PERHISSIVE FUNCTIONS 
(RELAYS AND SWITCHES) BYPASS X X X X X X X X X X X X X X X X 

ACTION OF LOGIC RELAYS 

INTERCONNECTING WIRING 
SHORTS EQUIVALENT TO ABOVE X X X X X X 

FAULTS 

TEST CIRCUITRY 
BLOCK SIGNALS TO LOGIC X X X X X 
OR TEST RELAYS 

NOTE: X IN BLOCK INDICATES POTENTIAL FOR COHHON-HODE FAILURE. 
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TABLE 3.10. COm10N MODE FAILURE EXPERIENCE AT ORNL (Ref. 157) 

Reactor 

Tower Shielding 
Reactor (TSR) 

Oak Ridge r,raphite 
Reactor (X-10) 

Aberdeen Pulse 
Reactor (APR) A 

Oak Ridge Research 
Reactor (ORR) 

Loy Intensity Test 

Lov IntensitY Test 
Reactor (LITR) 

Homogeneous Reactor 
Experiment No. 1 
(IIRF.-1) 

Holten Salt Reactor 
EXperiment (HSRE) 

Bulk Shle lding 
Reactor (BSR-1) 

High Flux Isotope 
Reactor (HFtR) 

lov Intensity Test 
Reactor (ORR) 

Lou Intensity Test 
Reactor: (LITR) 

Oak Ridge Research 
Reactor (ORR) 

Oak Ridge Research 
Reactor (Oli:R) 

Class of Environmental 
failure factor 

Actual to Oisahled by 
Coll'\pletion accident 

Actual to Communication 
completion 

Actual to Disabled by 
completion accident 

Arrested in Change of char-
progress acteristics 

Arrested in Unrecognized 
progress cormon element 

Arrested in Change of char-
progress acteristics 

Arrested in Unrecognized 
progress cof!i:l!On element 

Arrested in Unrecognized 
progress common element 

Arrested in llnrecognized 
progress common element 

Arrested in Unrecognized 
progress COIIl:I!\00 eleutent 

Potential Unrecognized 
corrected common element 

Potential, Change in char-
cor-rected acteristics 

Potential, Unreco)l:nized 
corrected common element 

Potential CODDUnication 
corrected 

Rate of 
Propa~ation 

Instantaneous 

Instantaneous 

Instantaneous 

Instantaneous 

Slow 

Slow 

Instantaneous 

Instantaneous 

Instantaneous 

Instantaneous 

Instantaneous 

Indetendnate 

Instantaneous 
on loss of 
flow 

Indeterminate 

Description of failure: renarks 

The reactor was suspended bet1-1een two towers by a cable from each in such a 
way that the severance of either cable would drop the reactor. Oropp[ng the 
reactor or pul linp a tover do\lfl by the cable hoist would be the maximum 
credible accident. Redundant switches were installed on a single bar to 
detect slack cable at the holst. However, when one cable became slack, it 
struck avav the tar and incapacitated the switches. Suhsequently the cable 
was cut hy the gears but was sufficiently fouled that it held. The hoist 
house vas unshielded ami hence unoccupied, so it vas not until the follot.'in~ 
inspection that the condition vas discovl';red, 

[n a test of the thermopile protection channels, all other protection chan­
nels vere hvpassed, and then all rods were 1-llthdrawn. The sloVl}" responding 
thermopiles terminated the excursion at about JOO;t rated paver. 

~n-ten the reactor was pulsed during a test program at Ll!Ul1., the high ioniza­
tion current destroyed the field-effect transistors in the flux amplifit=rs. 
ThE>se same amplifiers had heen used in the High Flux Isotope Reactor and 
the lfolten Salt Reactor F.xperfment, where protection response v0uld have 
bE>en fast enough to prevent the high curr(:>nt, A system 'With slaver response 
would not have prevented the high current and vould have allo·..;ed transistor 
failure, Protective diodes installed as a remedy must be tested periodically, 
In another installation, trouble developed from electrical-noise pickup which, 
it was found, could easily be reMedied hy removinfl the protective diodes, It 
nov develops that the original field-effect transistors are no longer being 
~nanufactured and substitutes must be found for all existing amplifiers at all 
locations, vith the overload probler.:1 helng kept in nind. 

Physicists flooded beam holes in accordance with procedures. This cut off the 
neutron beam and shielded the adjacent neutron detectors, 

The Lonization chambers were pur~ed continuously vith gas from a cotnmon bottlt!, 
Contaminated gas caused r:r..ost chambers to fail. 

The temperatures at the ionization chamPers l.'ere originally belol.' 50"C, After 
10 years of operation, the temperatures rose to lOO"C adn caused some of the 
chambers to fall. 

A steel housinR vas erected vhich enclosed a numher of pneumatic devices. All 
affected instruments folloved the pressure variations within the enclosure 
instead of the atmospheric pressure, 

TWo d-e electric pover supplies provided po\.o'er of opposite polarities with 
respect to ~round for a group of instrUl'lents used for protectlGn and control, 
The po<;itive volta~<:e load \.'as fall-safe, but it '.ISs discovered that less of 

paver to the ner,atiVf' volta~e load vas an unsafe failure, 
All preamplifiers for protection and control were mounted on a single struc­

tural-Bteel rr.ember, During plant alterations it became necessary to unbolt 
the steel member and jerry-rig a support, The support sagged, .strained the 
coaxial cables, ~tnd pulled loose the center conductors. Continuous monitoring 
detected the fault. 

It was necessary that the one rod vith th10- greatest reactivity \o'Orth be stopped 
reliably. Redundant relays were provided to ensure reUabllitv. urfginaily 
the t1-1o-phase P'Otor stopped satisfactorily; however, vhen sn improved pot,•t:>r 
source vas in3talled, the motr>r refused to stop vhen required. This failur~ 
was discovered on a periodic test, 

A single desiccant system served dry air to all coaxial cables for protection 
and control. The<~P. cables were under Vater, and a sin~le leak could lo\o'er 
the signal level from all ionization chambers. 

The neoprene gasket hetveen tank sections was embrittled by many years of 
radiation damage. A leak could W&t the shielding 'IIaterial and cause neutron 
attenuation at the ionization chambers, The flux controller could raise the 
paver, but the protection chambers \o'ould not indicate the power increase. 
The single-temperature channel would appear to be readinp; high incorrectly, 

A single electro!llechanical svitch in the control system, vhich was never tested, 
has the capability, upon its failure, to defeat the lov-flov protection svstem, 

In an effort to improve maintenance pt;,~Pdure~, instrument settings were tvped 
and pasted near the related inst~;J:r.ents, J t vas discovered that the typist 
had made an error and all ld,rdcal instruments ~o.:ould have been incorrectly 
set, 

The accident occurred during a test at ORtiL, not at the facility at Aberdeen. 
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failure will occur between two tests and for any number of channels is 

0.01 x 0.1 = 10-3. When random failures are considered the number of redundant 

channels is important, thus for one channel the probability of failure between 

two tests is 0.1 x 0.1 -2 = 10 and for a two-out-of-three logic scheme this 

-4 probability is approximately 10 It is seen that the probability of a 

common mode failure is 10 times larger and reliability calculations of random 

failures alone are not sufficient to demonstrate the safety of a system. 

Similar rough calculations of the rate of occurrence of common mode 

failures in PWR's and BWR's were made by Williams (Ref. 153). Failures were 

reported and classified for the years 1969 and 1970 for both systems. It was 

found that in this period the common mode failures were 17% of the total number 

of failures for PWR systems and 25% for BWR systems. The main cause of such 

failures was identified to be human error for PWR's while for BWR's over half 

of the common mode failures were due to design deficiency. The rates of 

occurrence of these failures were estimated to be 1.67 per reactor year in 

PWR's and 2.24 per reactor year in BWR's, however, it should not be inferred 

that the rate of occurrence of common mode failures in B"~'s is consistently 

higher for any year, since the data used for such calculations were not stat-

istically significant. 
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3.C. HUMAN FACTORS AND SOFTWARE RELIABILITY 

The effect that a human error can have on the safety of a system was 

discussed in the preceding section with regard to common mode failures. 

Operator errors were also included as events in the fault trees of Fig. 3.11 

("operator fails to notice the light") and Fig. 3.20 ("operator opens valve"); 

these events can be parts of minimal cut sets leading to the top event and the 

quantitative analysis of the trees requires that probability values be assigned 

to them. 

The field of human factors has been studied extensively and its main task 

is the prevention of accidents; one of the qualitative methods of Sec, 3.A.9 

dealt with personnel safety. However, the problem encountered here is of dif­

ferent nature since it is concerned with man-machine interactions and their 

quantitative description. The various aspects of the problem are discussed in 

Refs. 158, 159, and 160. The report by Garrick, Gekler, et al. (Ref. 161) is 

particularly relevant to the present discussion. 

Human error can occur during testing, inspection, repair and operat1on. 

In most of the cas~s the system under study is automatic (e.g. reactor protec­

tion systems) and operational errors are not important. As it is to be 

expected, the probability of a human error increases as the number of functions 

that the operator is required to perform increases and as the time available 

decreases. Again the problem of good data arises; usually the available data 

come from laboratory experiments and not from actGal situations bm: they do 

give a feeling of the order of magnitude of the probabilities. In Ref. 161, 

tables are provided ~vhich list several error rates for specific tasks (they 

have been compiled from other references listed in the report). In Table 3.11 

we reproduce some of the data regarding the probability that a display will be 

read correctly or that a control device will be operated correctly. Table 3.12 
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TABLE 3.11 HUMAN RELIABILITY IN OPERATION OF 

CONTROLS AND DISPLAYS (Ref. 161) 

Size (length) 1 inches: 

to 2 
aud up 

Nurnher of nrums or Di,gits: 

to 3 
to 5 
nnd up 

l)iameter, inches: 

Less than 1/4 
l/4 to 1/l 
1/2 to l 

Number of lights on: 

l or 
3 or 4 
5 to 7 
B to 10 

Presentation 

IntC.Tt:'littent {hlinking) 
continuous 

Push Buttons 

Size: 

mininture 
1/2 inc:h or more 

Numher 0f push huttons in a group 

A, Sin~l~ column or row 

1 to S 
I> to 10 
ll to 25 

13. Pouhlc column or row 
or rows and column 

1 to ··, 

h to 10 
11 to 25 

C. Matrix 

h to l 0 
1 1 to 15 
2':1 or more 

~umht'r of push buttonR within group: 

DistancL hetwecn •!dges, inchf'fi! 

1/8 to 1/4 
3/8 to 1/2 
1/2 more 

netP.nt: 

)'reseJ,t 
.lhRent (s¥.•1tch retnrns) 

SpC'.lldnp, 
'.Vri t_ ing 
Re-t· )$!0 it 1 on 
Dec l •d nn Making 
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0. ~990 
0, 9998 
0. 9995 

0. 9997 
0.9993 
0. 9985 

0.9995 
r,. 9997 
o. 9999 

0, 999A 
0. 9975 
0,9952 
o. 9945 

o. 9998 
0. 9996 

o. 9990 
o. 9999 

n. 9997 
o. 9995 
o. 9990 

o. 9997 
0.9995 
0. 9990 

0,9995 
0. 9~95 
0.99A5 

o. 9995 
o. 9991 
0.99&5 

o. 9985 
0. 9Y9J 
0.9998 

0,9998 
o. 99~3 

0. 99Q8 
0. Q99R 
o. Q992 
o. 9Q92 



TABLE 3.12. HUMAN RELIABILITY IN THE PERFORMANCE 

OF VARIOUS TASKS (Ref. 161) 

Task Element 

Position multiple position 

electrical switch 

Install gasket 

Inspect for dents, cracks and scratches 

Tighten nuts, bolts and plugs 

Connect electrical cable (threaded) 

Inspect for air bubles (leak check) 

close hand valves 

Open hand valves 

Remove nuts, plugs and bolts 

Verify light illuminated or out 
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Estimated 
Reliability 

0.9957 

0.9962 

0.9967 

0.9970 

0.9972 

0.9974 

0.9983 

0.9985 

0.9988 

0.9996 
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shows the reliability per operation for certain tasks. If the failure rate A 

is needed, we can calculate it by estimating the average time t required for 

the task and then divide the unreliability by t. In general, the error 

probability per operation lies in the interval 10-2 to 10-4 . 

On a more theoretical level, we mention the work of Regulinski and 

Askren (Ref. 162). They conducted experiments involving continuous tasks and 

analyzed statistically the results. The conclusion was that the Weibull, 

gamma and log-normal distributions were reasonable models for the distributions 

of times-to~human failure, while the normal and exponential distributions were 

rejected. 

All the models and methodologies presented thus far referred to the 

hardware of the system (human factors were also introduced in relation to their 

influence on the hardware). It has been recognized, however, that the reliabil­

ity of the software should also be examined, since failures may emanate from it. 

Schick and Wolverton (Ref. 163) provide with the following definition: "Soft­

ware reliability is defined to be the probability that the applications program, 

together with its operating system, data base, and computing environment, will 

perform its intended functions at the time when those functions are needed by 

the customer.". 

Mathematical models dealing with the problem do not exist, although some 

attempts for quantification have been made. Investigations in the past have 

been mainly qualitative. In Ref. 164 the types of software errors are defined 

as deficiencies in fidelity, veracity and viability, where fidelity is the 

accuracy of mechanization of an algorithm for a given operating and hardware 

system, veracity is the adequacy of representation of a real problem by a 

given algorithm, and viability is the adequacy with which timing constraints 

are met by the mechanization of algorithm. This discussion concerns large 

programs which cannot be tested exhaustively so that all errors are discovered 
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and removed. The number of errors expected depends on the phase in which the 

program is: in the design and development phase (design of algorithm, 

preparation of flowcharts, subroutines, assembly of the program) large numbers 

of errors occur, but are not of interest to reliability analysts, since the 

program has not reached the user yet. When this happens, we can define a 

failure rate as usual which follows roughly the bath-tub curve (Ref. 165), that 

is, there is an initial phase (debugging time) where many errors are discovered 

and corrected and a subsequent period (useful life) where random errors occur, 

which are attributed by Williamson, et al. (Ref. 165) to inputs which cause 

out-of-tolerance outputs. The last part of the bath-tub curve (increasing 

failure rate) corresponds to the wear-out of components; computer programs, 

of course, do not wear-out, but we can say that by that time the algorithm is 

obsolete and must be replaced by a new one. If this modeling of the failure 

rate is accepted, standard reliability techniques can be applied to estimate 

software reliability, as it is done in Refs. 164 and 165. 

The use of computers in reactor protection systems and the associated 

problems of hardware and software reliability is discussed by Hoermann in 

Ref. 166. Computerized functions include reactor scram, actuation of main 

steam, penetration and relief valves, turbine shut down and monitoring of 

temperature and coolant flow in the subassemblies of a breeder reactor (subject 

studied in detail in Ref. 112). An example of such a function involves a two­

out-of-three protection system (Fig. 3.24). As shown in the figure there are 

two possibilities: in Fig. 3.24.b each computer r~ceives only one 3ignal and 

the majority voting is accomplished by interconnecting the computers, while in 

Fig. 3.24.c all three input signals are feeded into each computer, which 

operates independent of the others. The author proceeds to stress the need for 

both hardware and software reliability analyses of such systems. The discussion 

is qualitative and deals with the necessary actions that insure high software 

reliability (useful references in this context are 167 and 168). 
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Figure 3.24. Two-out-of-three Protection System. 
(a) Hard-Wired, (b) and (c) Computerized. 
(Ref 166) 
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3.D. ANALYSES WITHOUT LOGIC DIAGRAHS 

3.D.l Introduction 

The methods which have been presented in the preceding sections are the 

fundamental tools which enable one to study the safety of systems. The ques­

tion as to which method is appropriate for a specific problem can be answered 

by looking at the available information. We recall that the general problem 

posed in quantitative safety studies is the evaluation of the probability that 

a specified event will occur in a period of time or that a specified function 

will be performed satisfactorily over a period of time or per demand. Then 

we can distinguish two cases: 

i. The simplest case occurs when past experience from identical or basically 

similar situations as the one under investigation make it possible to calculate 

the required probabilities by statistical methods. The calculation may be non­

parametric or a distribution function may be applicable, in which case its 

parameters are estimated from the data. Some simple probability laws may be 

used (e.g. the conditional probability theorem) in order to facilitate the 

calculations, but the procedure is essentially straightforward. 

ii. This case is considerably more complex. It concerns studies involving 

multicomponent systems for which statistical data is lacking. Many factors 

influence the behavior of the system besides the failure properties of its 

parts, like inspection, maintenance, human operators, etc. In this case one 

exploits the hierarchical structure of the system to analyze it into simpler 

systems for which statistical failure data is available and the influence of 

maintenance can be incorporated in the calculation. Of course, logic diagrams 

are employed as well as qualitative methods for better understanding of the 

system. 
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In this section we focus our attention upon applications which do not 

require the use of logic diagrams. Of course, the methods themselves are not 

new. 

3.D.2 Markov Models 

The mathematics of Markov processes was presented in detail in Sections 

2.D.4 and 2.D.5. It will be recalled that all the mutually exclusive states 

of the system must be enumerated and statistically significant data should be 

available for the estimation of the entries of the transition rate matrix. 

The number of states creates a problem, since it increases very rapidly with 

the complexity of the system; even in simple situations numerical methods are 

required to solve the Markov system of equations (Eq. 2.212). 

Applications of Markov processes to power systems (transmission, distribu~ 

tion, bulk power supply systems) are discussed in Ref. 169. 

Billinton and Lee (Ref. 170) present an application of the method to the 

reliability of the pumps of the heat transport system of a generating station. 

The station contains four 750 MW units and the heat transport system of each 

contains four 8,000 hp pumps. The pump configuration for each unit is assumed 

to operate independent of the configurations of the other units. This assump­

tion enables one to study each unit separately with the advantage of fewer 

states in the Markov model; independence cannot be assumed if spare pumps are 

available for the whole station. 

Each unit operates at full power when all four pumps are working and at 

75% of power if one pump fails; failure of two or more pumps results to a shut­

down of the unit. Fig. 3.25 shows the state space diagram for this case. 

Notice that in addition to the usual failure and repair rates (A and ~) a third 

rate is also used, the rate of installation of a repaired unit y. 
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STATE 1 
UNIT UP 
NO FAILED 
PUMP 

4X 'Y 

STATE 2 STATE 3 
UNIT 75% UNIT 75% 
1 FAILED /1 

... 
NO FAILED 

PUMP PUMP 

3X 'Y 3X 2'Y 

lr 

STATE 4 STATE 5 STATE 6 
UNIT DOWN UNIT DOWN UNIT DOWN 
2 FAILED 211 

.. 
1 FAILED 

... 
NO FAILED 

PUMPS PUMP 
/1 

PUMP 

Figure 3.25. States and Transition Rates of One Generating Unit With 
Four Pumps. (Ref 170) 
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From the diagram we see that the transition rate matrix is 

1 2 3 4 5 6 States 

-4:\ 4:\ 0 0 0 0 1 

0 -(3:\+]J) )J 3:\ 0 0 2 

{aij} 

y 0 - (3:\+y) 0 3:\ 0 3 
A -

0 0 0 -2).1 2).1 0 4 

0 y 0 0 -()J+y) )J 5 

0 0 2y 0 0 -2y 6 

The steady-state probability vector IT == (IT 1 , • . . , IT 6 ) is calculated by solving 

the system 

IT A = 0 

6 
E IT = 1 
i=l i 

(3. 87) 

-1 -1 -1 Using the values A = 0.6 yr , )J = 35.04 yr and y = 292 yr the numerical 

results on Table 3.13 are derived. The probability of the unit working at full 

power is ITl and at 75% of the power is IT2 + IT3. 

per year is calculated from 

The frequency f. of a state j 
l. 

(3.88) 

and the average fraction of the year spent in state i is calculated from 

IT. 
l. T. =-

l. fi 
(3.89) 

Since a pump itself is an item that is quite complex and can have a number 

of failure modes an improvement of the above model can be achieved by consider-

ing two types of failure: 1- permanent failures which require actual removal 

of the pump and installation after repair, and 2 - temporary failures which 

can be repaired in a short time at the actual location of the pump. Assuming 
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TABLE 3.13. NUMERICAL RESULTS FOR THE MARKOV MODEL OF FIG. 3.25 (Ref. 170) 

STATE VALUES CAPACITY VALUES 

State Probability Frequency Average duration Capacity Probability Frequency Average duration 
(per year) (year) (per year) (year) 

1 0.9268535 2.2244485 0.4166667 100% 0.9268535 2.2244485 0.4166667 

2 0.0634831 2.3387181 0.0271444 75% 0.0711011 2.3524304 0.0302245 

3 0.0076180 2.2381608 0.0034037 0% 0.0020454 0.1279820 0.0159817 
N 
():) 

<l' 4 0.0016306 0.1142696 0.0142694 

5 0.0003913 0.1279820 0.0030577 

6 0.0:000235 0.0137124 0.0017123 

,_ 
'- '- _, _, 



-1 -1 that the temporary failure and repair rates are A' = 0.6 yr and~· = 584 yr 

the state space diagram is shown on Fig. 3.26, where now there are ten possible 

states. The diagram has been drawn on three planes to facilitate reading 

The authors proceed to study the effect of stand-by pumps on the avail-

ability of each unit and the problems that arise with regard to the number of 

states when all four generating units of the station must be investigated.' 

Another application of Markov processes can be found in Ref. 171, where 

the reliability of the control rod drive system of a nuclear reactor (Otto 

Hahn nuclear ship) is investigated. Twenty system states are identified and 

the solution of the Markov system is carried out numerically with a program 

based on the Runge-Kutta method. 

A fundamental assumption of Markov models is the constancy of the transi-

tion rates, which implies exponential distributions for the times spent by the 

system in each state. The field data, however, indicate in many situations 

that this assumption is not true. DiMarco (Ref. 90) and Patton (Ref. 172) 

study the reliability of generators and they point out that the available data 

suggest that the Weibull distribution is more appropriate to use than the 

exponential. In this case the results of Sec. 2.D.6 for non-Markovian systems 

apply. 

3.D.3 Natural Phenomena 

An important application of probabilistic models is in the study of 

natural phenomena (earthquakes, tornadoes etc.), The lack of real physical 

understanding of the natural processes which lead to such phenomena make it 

necessary to use the available statistical data in order to make predictions, 

even though many serious problems arise regarding the validity of the data and 

the models employed. Usually a distribution function is selected based on the 

knowledge we have about the nature of the phenomenon and its parameters are 
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2 TEMP 
FAILURES 

l2p' 

STATE 10 
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Figure 3.26. State Space Diagram for the Generating Unit With Two Failure Modes 
for Each Pump. (Ref 170) 
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estimated from the data. Table 3.14 is extracted from Ref. 173 and shows 

several applications of this approach and the corresponding references. Some 

theoretical aspects of probabilistic modeling of natural events are also exam-

ined by Hewitt in Ref. 173. 

The first question is how the events occur in time; to answer it we use 

either a discrete distribution for the number of events occurring in a period 

of time or a continuous distribution for the time between successive events. 

Frequently a second random variable is associated with each event (e.g. the 

magnitude of an earthquake) and another continuous distribution is required 

to describe it. Two different approaches are possible in this case: either 

we use two distributions, as described above, one for the time occurrence and 

one for the magnitude, the latter being a conditional distribution in the 

sense that it gives the probability of the magnitude being in a certain inter-

val given that an event has occurred, or we use one distribution which gives 

the probability of the largest or smallest magnitude over a period of time 

being in a certain interval. 

The discrete distribution which is used widely in natural phenomena is the 

Poisson: if the average number of events per unit time is A, then in the 

interval (O,t) the probability of k events is 

-At (At)k 
p(k) = e ~ (3.90) 

Basic assumptions for this distribution to be appropriate are: 1 - the 

characteristics of the phenomenon should be constant over the period of 

interest and 2 - non-overlapping time intervals are stochasti?ally independent, 

that is, the number of events in an interval is not related with that in any 

other interval. Epstein and Lornnitz (Ref. 40) have used this distribution as 

a model of earthquake occurrence. The inter-arrival times are, of course, 

exponentially distributed, i.e. 
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TABLE 3.14 EXAMPLES OF NATURAL PHENOMENA DESCRIBED BY 
PROBABILITY DISTRIBUTIONS (Ref. 173) 

Poisson Distribution 

1. Meteorite strikes on (potential) 
human targets 

tlegative Binomial 

l. Frequency of tornadoes 

Gamma Distribution 

1. Sea waves: height 

2. River levels: recurrence 
of exceedances 

3. Precipitation: drought 
occurrence 

E~onential Distribution 

1. River levels 

Raxleigh and Weibull Distribution 

1. Wind Speed 

2. Wave heights: trough-to-crest, 

Lognormal Distribution 

1. Tsunamis 

2. Hydrologic Series (various examples) 

3. Tornadoes: dimension of damage Swath 

4. Flood damage magnitude: USA 

5. Earthquakes: magnitude and frequency 
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L. La Paz, Advances in Geophysics 4, 
Academic Press, 1958. 

H.C.S. Thom, Monthly Weather Review, 1963 

J.S. Longuet-Higgins, J, Marine Research, 
Vol. 11, 1952 

C.A. McGilchrist, et a1., Water Resources 
Research, Vol. 4, 1968, Vol. 5, 1969 

G.L. Barger and H.C.S. Thorn, Agronomy Journ., 
Vol. 41, 1949. 

McGilchrist et al., 1969. 

A.G. Davenport, Wind Effects on Buildings and 
Structures, Univ. of Toronto Press, 1968. 

J.s. Longuet-Higgins, 1952. 

W.G. Van Dorn, Advances in Hydroscience, Vol, II, 
VenTe Chow, Ed., Academic Press, 1965. 

Ven Te Chow, Proc. Amer. Soc. Div. Engr. Vol. 80, 
1954 

H.C.S. Thorn, Monthly Weather Review, 1963, 

Amer. Insur. Association, 1952-55 

T. Asada, Journ. Phys. Earth (Tokyo), Vol. 5, 1957. 

) 

) 

) 

) 

) 

) 



F(t) = 1 - -At 
e 

is the probability that one or more events occur in (O,t) and 

R(t) = -At 
e 

(3.91) 

(3. 92) 

is the probability of no events in (O,t). If we are interested in the dis-

tribution of the interval of time in which a specified number k of events 

occur, we must take the convolution of k exponentials, which leads to the 

gamma distribution (see Sects. 2.A.6 and 2.B.2), i.e., 

F (t) 
k-1 (h)r -At 

= 1 - ""' ~-'-- e LJ rl 
r=O 

k = 1, 2, ..• (3.93) 

A serious objection against the Poisson model is the requirement of inde-

pendence of events. This is an idealization of the real world, since it is 

known that phenomena like earthquakes, tornadoes, floods tend to occur in 

clusters (in Ref. 26 this fact is pointed out for earthquakes). This problem 

of contagion (i.e. the occurrence of an event increases the probability of 

occurrence of another, a typical example being a contagious disease) has been 

studied and the usual approach is to modify the standard distributions to 

allow for the clustering (Refs. 173 and 174). For example, the Polya process 

is such a modification of a Poisson process (see also Feller, Ref. 1). Before 

using such models, however, it must be determined from the physical processes 

that occur, that indeed clustering is due to contagion and not to other 

reasons, such as uneven observations. 

Having determined the distribution of the events in time the distribution 

of magnitudes should be found. Magnitude is treated as an independent random 

variable and it is, in most cases, continuous. Which distribution should be 

used is again determined from physical considerations and the available data. 

Thus, for earthquakes the distribution of magnitudes which is proposed in 

Ref. 40 is the exponential, i.e. 
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H(m) = 1 - e-Sm (3.94) 

which is interpreted as follows: given that an earthquake has occurred the 

probability that its magnitude is less than m is H(m). 

From the assumed independence between frequency and magnitude it follows 

that, for example, the probability that n earthquakes will occur in (O,t) all 

having magnitude less than m is 

= e-At (:\t)n [l 
n! - e -SmJn (3.95) 

The probability that all the earthquakes in (O,t) will have magnitude less than 

m is the sum of Eq. (3.95) over n, i.e. 

00 

G(H $ m) = L p(n)[H(m)Jn 
n=O 

(3.96) 

which is the extreme value distribution for the largest value, as expected, 

A further implication of the independence of magnitude and frequency is 

that we can find the probability of exactly j earthquakes occurring in (O,t) 

with magnitude greater than m. If n earthquakes occur, then the probability 

that j of them have M ~ m is given by the binomial distribution 

The required probability is found by summing over n to allow for any number of 

earthquakes to have occurred, i.e. 
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n! 

A.t[ ]j = e- 1-H(m) 

-A.[l-H(m)]t {A.[l-H(m)]t}j = e . t J. 
(3.97) 

This result shows that earthquakes with magnitude greater than m follow the 

Poisson distribution with rate 

A.(m) = A.[l-H(m)] (3.98) 

These calculations show how the frequency and magnitude distributions 

can be combined to answer questions that may arise in applications. Of course, 

the exponential distribution is only one possible choice for the magnitude; 

other distributions that have been used incude the Rayleigh (wind speeds), the 

log-normal (tornadoes, floods), the Weibull (wind speeds), et al. (see Table 

3.14 for references). 

As stated earlier, the second approach to the magnitude-frequency problem 

involves extreme value distributions. We no longer assume independence of 

magnitude and frequency and their exact distributions need not be known. The 

most commonly applicable distribution is the Type I extreme value distribution 

of largest values 

F(m) = exp [-e-a(m-S)J (3.99) 

which gives the probability that the maximum magnitude in a specified period of 

time (usually a year) is less than m. Of course, Eqs. (3.96) and (3.99) are 

alternative expressions of the same distribution; there are however fundamental 

differences between the two, since Eq. (3.96) was derived from Eqs. (3.90) and 

(3.94), while for (3.99) no specific form of the initial distribution was 
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assumed (see also Sects. 2.A.6 and 2.B.2). This difference is reflected on 

the interpretation of the parameters and the method of their estimation from 

data. 

The return period of the extremes of magnitude at least m is 

1 
T(m) ""' 1-F(m) years (3.100) 

where F(m) is given by Eq. (3.99). Thus it takes an average T(m) number of 

years for the annual maximum magnitude to be at least m once. If we wish to 

find the return period of a certain magnitude and not of the annual maximum 

we work with the parent population. From Eq. (3.98) we have that the number 

of events with magnitude greater than m is (per unit time) A(m), therefore 

the return period is 

1 
T' (m) = -,----___,,.......,....,.. 

A[l-H(m)] 

or, using Eq. (3.94), 

1 °m T' (m) = - ef-' 
A units of time 

(3 .101) 

(3.102) 

T(m) and T'(m) are different for small values of m but for larger values the 

difference is insignificant (if m is large enough the population maximum and 

the annual maximum are the same). Shakal and Willis (Ref. 26) found that for 

earthquakes the two return periods are almost the same for values greater than 

10 years. Besides earthquakes the extreme v.alue distribution has been applied 

to the study of floods (Ref. 57), wind speeds (Ref. 175), etc. (see Gumbel, 

Refs. 16 and 17). 

Finally, with regard to the general problem of modeling natural phenomena, 

Hewitt quotes Katti and Sly (Ref. 174) as follows: 

"1. No single theoretical distribution has been found to describe 
any large scale data. 
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2. For a number of data there could be two or more theoretical 
distributions that fit equally well and there is no way to 
choose between them based on fits alone. 

3. Two or more physical models could lead to the same final 
statistical distribution and hence the estimation of the 
parameters of the distribution may not have unique meaning. 

4 .... different methods of estimation lead to widely differing 
estimates when the methods are consistent ,,, there are a 
number of empirical frequencies to which the same theoretical 
frequency function has been fitted by different consistents 
methods.,," 

3.D.4 Various Probability Hodels 

This section presents several examples of studies which show how simple 

probability relations, statistical data and empirical relations can be used 

to solve problems related to safety. Naturally, there is no general method-

ology which is universally applicable and each situation must be treated 

individually. 

Four recent UCLA reports deal with probabilistic analysis of dam fail-

176 . 1 h 177 ill f . h . 1 178 d i ures, alrp ane eras es, sp s o toxlc c emlca s an meteor te 

h d 179 azar s. In the last report the probability (per year) that a reactor 

will be directly hit or damaged by the heat generated by a near miss is cal­

culated. If ~S = 1.05 x 1014 
ft

2 
is the area of the United States and ~T 

is some area indicating the effective target, then the probability that N(W) 

meteorites with weight in some interval about W will damage the target is 

A N(W) 

P (W) = 1 -(1 -~;) (3.103) 

The area ~T for a given reactor consists of the area Ai of the plant itself 

plus the lethal area a(W) which is associated with each meteorite; this last 

area is included to account for the effect of a near miss. From Fig. 3.27 it 

follows that 
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Figure 3.27. Comparison of Target Area and Affected Area for a Hypothetical Meteorite Crash; 
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AET • (~ + ja(wi) 
2 

(3.104) 

The number of meteorites in a certain weight range which hit the United States 

per year and the associated a(W) is shown on Table 3.15. The historical data 

are taken from Ref. 180. The vulnerable reactor area is estimated to be bet-

4 2 5 2 ween 10 ft and 10 ft . The table shows the probabilities as calculated from 

Eq. (3.103) and the potential damage. Since the first two weight ranges can-

not damage the reactor, the probability of such a damage is calculated by sum-

ming the third through the sixteenth terms of the fourth column. For 

-10 5 2 ft. this probability is 7 x 10 per year and for A. = 10 ft it is 
~ 

per year. 

The important thing in such studies is to state clearly under what 

assumptions this use of the historical data is valid. The present problem is 

one of frequency-magnitude and it has been assumed that (a) the number of 

meteorites that fall is constant in one year and equal to 3500, (b) meteorites 

fall randomly throughout the surface of the earth; therefore, given that the 

area of the earth is 5.48 x 1015 ft 2 and that of the U.S. 1.05 x 1014 ft 2, we 

can find the number of meteorites per year falling on the United States with a 

simple calculation, i.e. 

3500 X 1,05 X 1014 ~ 65 
5.48 X 1015 

(c) the number of meteorites per year in a given weight range (as given on 

Table 3.15) does not change with time. 

A different treatment of data is done by Bush in Ref. 181, where the 

probability of damage to critical plant components due to missiles from the 

turbine is calculated. This probability, P
4

, is given by the product of three 

other probabilities, i.e. 
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N 
\0 
00 

TABLE 3.15. PROBABILITY OF A STONE OR IRON METEORITE HITTING AND DAMAGING A NUCLEAR REACTOR IN THE 

UNITED STATES (Ref. 179). 

w 
Range of 
Meteorite 
Weight Hit­
ting Earth 

(Tons) 

1/2 X 10-3 - 10-3 

10-3 - 10-2 

10-2 - 10-l 

10-l - 10-o 

10° - 101 

101 - 102 

102 - 103 

103 - 104 

104 - 105 

105 - 106 

106 - 107 

107 - 108 

108 - 109 

1010 
- 1011 

1011 - 1012 

1012 - 1013 

'-

N(W) 
Number of 
Meteorites In 
Weight Interval 
Per Year in 
United States 

45 

12 

6 

2 

14 X 10-2 

2 X 10-2 

6 X 10-3 

13 X 10-4 

-4 2.1 X 10 
-5 5.9 X 10 

12 X 108 

-6 2.6 X 10 

-7 4.6 X 10 
-8 2.2 X 10 
-9 4.4 X 10 
-9 1.0 X 10 

a(w) 
Potential Crash 

Area of 
Average 

Meteorite 

(ft2) 

-1 2.5 X 10 
0 2.1 X 10 
1 1. 8 X 10 
2 1.1 X 10 
2 9.8 X 10 
4 1.9 X 10 
5 1. 6 X 10 
6 1.1 X 10 
6 5.9 X 10 
7 5.9 X 10 

8 1.4 X 10 

8 6.7 X 10 

3.0 X 109 

6.7 X 1010 

3.0 X 1011 

1.4 X 1012 

p 

Probability of 
Hitting One 

Nuclear Reactor 
In United States 

A.=l04 ft2 A.=l05 ft2 
]_ ]_ 

3 X 10-9 

8 X 10-10 

4 X 10-lQ 

2 X 10-10 

5 X 10-12 

5 X 10-12 

1 X 10-11 

5 X 10-12 

4 X 10-12 

2 X 10-12 

3 X 10-8 

8 X 10-9 

4 X 10-9 

2 X 10-9 

5 X 10-11 

5 X 10-10 

3 X 10-11 

9 X 10-12 

5 X 10-12 

2 X 10-12 

1 X 10-ll 1 X 10-ll 

1 X 1011 1 X 10-ll 

8 X 10-12 

7 X 10-12 

1 X 10-11 

1 X 10-11 

-

8 X 10-12 

7 X 10-12 

1 X 10-11 

1 X 10-ll 

-

Will Meteorite Cause 
Damag~ to Containment 
of a Nuclear Reactor? 
(Assume a Direct Hit) 

no 

very doubtful 

very possible 

certain rupture of containment 

certain rupture of containment 

serious damage 

destroy nuclear reactor 

destroy nuclear reactor 

destroy nuclear reactor 

destroy nuclear reactor and 
nearby area 

destroy nuclear reactor and 
surrounding areas 

destroy nuclear reactor and 
large surrounding area 

" II " 
" II II 

" " " 

" II " 

._ - -



(3.105) 

where P
1 

= probability of turbine failure and ejection of an energetic missile 

P
2 

= probability that such a missile strikes a critical component 

P
3 

= probability that the component suffers a significant damage. 

P
1 

is estimated from recorded turbine failures, which are shown on Table 3.16. 

The operating experience covers approximately 70,000 turbine years. The 

special feature of this historical record is that it cannot be assumed that 

the population of turbines, from which it was constructed, is homogeneous, 

because there has been an evolution in the design and manufacturing of the 

turbines over the years. Bush attributes the failures to three general causes: 

(a) metallurgical and/or design errors, (b) environmental effects, and (c) over­

speed. As an example, the first category includes failures by brittle fracture 

due to retained oxygen and high nil-ductility temperatures; however, the pro­

cesses of melting and heat treatment of the materials have been modified, so 

that such a failure is considered impossible now (the last one was recorded in 

1956). 

This continuous improvement of the quality of the turbines suggests that 

the failure rate is a decreasing function of time. This is the subject of a 

reliability-growth study (Refs. 25, 182); there are no standard rules indicat­

ing what model should be used and such a decision is largely a matter of judg­

ment. The fact that the failure rate decreases with time does not imply that 

the bathtub curve is rejected. Referring to Fig. 3.28 we quote from Codier: 182 

" ••• the bathtub curve is all right if it is understood that it describes the 

life-cycle behavior of a particular serial-numbered piece of hardware, but it 

has to be understood that the bathtub can be made to move up and down as the 

serial numbers change." 
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TABLE 3.16. CUMULATIVE TURBINE EXPERIENCE (Ref. 181) 

TOTAL MISSILES 
) 

C/) !;! !;! 9 t:C/) ;; t: C/) 

Plants Turbine 
tj Ji ~ ;s~ 
~ ~1::/ 1::/ $ ~ 

Yr/Yr * ~ "-1 
Year. New Total l: Turbine Yrs (..)~ 4:, (..) ~ 

Pre-1950 1037 
) 

12,330. 
1950 99 1136 1087 13,417 
1951 120 1256 1195 14,612 1 1 1 1 
1952 108 1364 1310 15,922 
1953 149 1513 1385 17,360 1 2 0 1 
1954 191 1704 1609 18,969 3 5 2 3 
1955 146 1850 1777 20,746 
1956 127 1977 1914 22,660 1 6 0 3 
1957 151 2128 2052 24' 712 
1958 193 2321 2225 26,937 
1959 138 2459 2390 29' 327 1 7 1-t 4 
1960 146 2605 2532 31,859 1 8 H 5 
1961 90 2695 2650 34,509 
1962 105 2800 2748 37,257 
1963 95 2895 2848 40,105 
1964 111 3006 2950 43,055 
1965 87 3093 3050 46,105 
1966 97 3190 3132 49,237 ) 
1967 113 3303 3246 52,483 
1968 103 3406 3355 55,838 
1969 110 3516 3461 59,299 1 9 t+ 6 
1970 91 3607 3561 62,860 
1971 95 3702 3655 66,515 
1972 126 3828 3765 70,280 1 10 1+ 7 ) 

Values ~ Turbine Years Synthesized in Case of E E Data 

+ Overspeed, or out-of-phase, or generator failure 

) 

) 
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DESIGN-PRODUCTION LIFE CYCLE 

Figure 3.28. The Bathtub Curve and Reliability Growth. (Ref 182) 
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182 In the present problem the model used was the Duane growth model. 

The cumulative failure rate AE is 

(3.106) 

where H: total test time (years) 

F: number of observed failures during H 

k: a constant 

a: growth rate usually in the range 0.3 to 0.5 

If the data are plotted on a log-log paper and a straight line is fitted, the 

parameters k and a can be estimated. This is done in Fig. 3.29, where, in 

addition, the current value of the failure rate is shown. This current or 

instantaneous failure rate Ai is interpreted as the failure rate of the equip­

ments, if the reliability growth stopped at that time and it is calculated by 

differentiating Eq. (3.106) with respect to H, i.e. 

(3.107) 

-4 The current failure rate is approximately 10 failures per year and it is 

projected to be~ 7 x 10-5 within five y~ars. The cumulative and instantaneous 

) 

) 

) 

) 

) 

MTBF's are calculated by taking the inverse of the corresponding failure rates; ) 

the current MTBF is ~ 10,000 turbine years and its projection after five years 

is 12,000- 14,000 turbine years. From Ai we estimate the value of P
1 

as 

-4 approximately equal to 10 per turbine year. 

Having estimated P
1 

there remains to find P
2 

and P3. The strike probabil­

ity P
2 

is estimated to be at most 10-3 for a target area of 1200 ft 2; the cal­

culation takes into account the relative position and orientation of the tur-

bine and the target area and it is described in detail by Bush. The damage 

probability P3 is affected by the width of concrete protecting the critical 

components and the angle of incidence of the missile. Considering all the 

possibilities Bush concludes that the total probability P
4 

is in the interval 
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-6 -8 10 to 10 per year. The problem of missile generation in a reactor plant 

is discussed in more general terms but without quantitative analysis by 

Gwaltney (Ref. 183) along with an extensive list of references. 

Other probabilistic studies along the spirit of this section include the 

study of aircraft hazards for nuclear plants (Ref. 184) and a series of studies 

from UKAEA on the evaluation of the risk to a population resulting from the 

release of radioactivity (Refs. 185, 186 and 187). 
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