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PREFACE
The summer of 1974 concluded the first year of the National Science
Foundation funded study at UCLA entitled "A General Evaluation Approach to
Risk-Benefit for Large Technological Systems and Its Application to Nuclear
Power'" (NSF Grant GI-39416), The objectives of this project can be defined
to include the following:

1) To make significant strides in the provision of improved bases
or criteria for decisilon-making involving risk to the public
health and safety (where a risk involves a combination of a
hazard and the probability of that hazard).

2) To make significant strides in the structuring and development
of improved, and possibly alternative, general methodologies
for assessing risk and risk~benefit for technological systems,

3) To develop improvements in the techniques for the quantitative
assessment of risk and benefit,

4) To apply methods of risk and risk-benefit assessment to specific
applications in nuclear power (and possibly other technological
systems) in order to test methodologies, to uncover needed
improvements and gaps in technique, and to provide a partial,
selective, independent assessment of the levels of risk arising
from nuclear power.,

The first year's effort has, to a considerable extent, involved reviews

of some of the several fields of interest to the overall study. Beyond this,
the work has largely been exploratory in nature and been concentrated in

specific parts of the overall problem,

iid




This UCLA Engineering report is one of a group of several which
represent either completed reviews or interim reports on those segments of
the exploratory research which have reached a stage sultable for publica-
tion. Publication of these reports has been expedited, accepting the pos~
sible loss of better editorial form and potential technical improvement,

in order to make the information rapidly available.
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1. TINTRODUCTION

The aim of this report i1s to present in a systematic way the mathematical
methods which are useful in reliability and safety studies. The bases upon
which these methods are built are probability theory, statistics and logic.

In general, the problems that these studies deal with concern the pre-
diction of the probability that a specified function will be performed satis-
factorily over a period of time or per demand and the identification of events
and thelr probabilities, which may lead to unfavorable circumstances endanger=—
ing the health of the public.

The vast number of factors that influence the performance of the systems
which perform the required functions and the impossibility of knowing a priori
their time-, space-~ and magnitude-behavior suggest that the natural way to
handle these problems 1s through probabilistic methods. The parameters appear-
ing in the analysis are estimated from the past performance of similar systems
functioning under similar conditions as the system under study., This estima-
tion i1s, of course, done with the aid of statistical techniques.

Besides overcoming the problem of needing to know what happens exactly,

a probabilistic analysis is very useful in that 1t assigns probabilities to
the various possibilities whenever known uncertainties are encountered

instead of assuming that the "worst" will happen. When many events appear

to be possible at a certain stage of the analysis they are all included in

it and they are combined with the use of elementary operations of mathematical
logic. Such a case occurs frequently in the study of complex systems and it
provides with a systematic way of identifying sequences of events that may
lead to dangerous situations as well as their probabilities of occurrence.
These probabilities form the basis of assessing the risk to the public

(usually risk is defined as the product of the probability of an accident




times some measure of 1ts consequences) and accordingly decide to eliminate
or accept the risk. This decision is made with the use of a prespecified
criterion, which is possible to establish only because the risk has been
quantified.

Unfortunately, despite the merits of probabilistic methods, when one
tries to apply them in real cases there are serious drawbacks that are
revealed. The most important is the lack of statistically significant data
upon which the models can be built. Many systems are new, thus no informa-
tion regarding past experience 1s available; even standard components of the
systems may operate under conditions which are unique to the case under study
thus impairing the validity of existing data; people did not bother or did
not have the necessary tools to make accurate measurements in the past (e.g.,
earthquake histories are, in general, very poor), and so on. Special stat-
istical techniques are developed to deal with some specific situations, but
the most common "solution" is to make drastic assumptions and use judgement
which, of course, reduce our confidence on the methods and their results.

This report deals mainly with the mathematics involved in quantitative
assessments, Summaries of illustrative applications are included and refer-
ences to the literature are listed for further details. The second chapter
describes the methods of handling problems involving one component or simple
logical configurations and its contents are more or l-.= what it is known as
reliability theory. To make the report self~con.ained an introduction to the
fundamentals of probability theory and statistics is given; then the moceling
of the failure of components by statistical distributions is discussed fol-
lowed by the mathematical description of various maintenance policies. Renewal
theory and Markov processes are examined in detail, since they are important

mathematical tools in safety studies.




The third chapter departs from conventional reliability theory in that
it deals with the analysis of complex systems. The fault-tree methodology is
developed in detail and its uses and limitations are investigated. Methods,
like the failure modes and effects analysis are described even though they are
not strictly mathematical, because they form an important part of a safety
study. The special problems arising from software and human errors as well as
the possibility of common mode failures are also discussed. Finally the use
of statistical techniques to handle major natural phenomena and methods of
dealing with systems wilthout exploiting their logical structure are investi-
gated. Throughout the report references are given where a more extensive dis-
cussion of the various topics can be fopnd.

This report was written prior to the release of Draft WASH-1400 '"Reactor
Safety Study. An Assessment of Accident Risks in U. S. Commercial Nuclear
Power Plants" and the methodological aspects and applications of WASH-1400

have not been factored into this report.







2, ANALYSIS OF COMPONENTS AND SIMPLE SYSTEMS
2.A ELEMENTS OF PROBABILITY THEORY AND STATISTICS

2.A.1 The Probability Concept

In the development of methods for Quantitative Safety Analysils extensive
use of the concepts of probability Theory ("probability', "event" etc.) is
made. It is essential that such terms are well understood for a successful
application of the methods. For a complete analysis of probabilistic ideas
the reader 1s referred to the book of Feller1 and for more concise treatments

to any standard textbook.2’3’4

A brief summary of the important ideas is
presented here.

There are various interpretations of probability from the strict
mathematical formulation to the intuitive concept found in the average person.
Except for the former the others are incomplete but it is worth mentioning
them for they help to clarify things.

Subjective Interpretation: Probability is a measure of the belief that
a person has to the truthfulness of a certain statement. In this sense prob-
ability reflects one's judgement and state of knowledge. Examples from every-
day life are statements like "I am sure it will rain tonight," "The odds against
X are four to one' etc.

Empirical Interpretation: The probability of an event A is the limit of
the frequency-ﬁ as N + o, where N is the number of times an experiment was
repeated and n is the number of times the event A occurred, Although this
interpretation is very common among applied scientists it is not sufficient.
An obvious limitation is the requirement of having a large number of experi-
mental data; in addition some questions regarding the existence of the above
limit can be raised.

Classical Interpretation: If N is the number of all possible outcomes of

an experiment and the event A can occur n times, the probability of A is-E,




if all outcomes are equally likely. In this definition the experiment does
not have to actually be performed. However the assumption of equally likely
outcomes poses severe restrictions. In many cases it is difficult to estab-
lish its validity or, even worse, it is already known that the outcomes are
not equally likely (e.g. an experiment with a loaded die). Other objections
against the classical interpretation2 include the fact that it is circular
(the statement "equally likely' actually means "equally probable," but it is
the meaning of "probable" that is attempted to be defined) and that in many
experiments the number of all possible outcomes is infinite.

The difficulties which arise with the above definitions have led to the
axiomatic formulation of the theory of probabilities. This in turn requires
knowledge of the abstract ideas of measure theory. However it 1s possible to
outline the formalism using elementary set theory. This will be done in the
subsequent sectlons. At this point it must be emphasized that in the axiomatic
treatment probabilities are assumed to be given parameters the actual numerical
values of which are of no concern to the theory, in the same way that masses
are treated in classical mechanics.

2.A.2 Axiomatic Formulation and Basic Theorems

In the axiomatic formulation of any branch of mathematics there are
certain concepts which are considered intuitive and remain undefined (e.g. the
points of geometry). In probabilities such a concerl 1s that of the sample
space and sample point. Every possible outcome of an experiment 1is represented
by one and only one sample point; the set of all sample points forms the sample
gspace S. An event 1s defined as a collection of sample points, that is, it is
a subset of S. For example, the sample space S = {1,2,3,4,5,6} represents all
possible outcomes of throwing a die. The subset A = {1,3,5} represents the

event '"the outcome of the experiment is an odd number."




From the previous paragraph it is clear that sets play an important role
in this theory. Therefore some of their properties are of particular interest.
All the sets will be assumed to be subsets of the sample space S.

i. The null set contains no sample points. It 1s denoted as ¢ and it repre-
sents an event that can never happen.

ii. The complement of an event A, written as A, is the set which contains
all the sample points of S not in A.

iii. The union of two events A and B i1s a third event C consisting of all the
elements of either A or B or both (taken once). It is denoted as A+B = C or
AUB = C.

iv. The intersection of two events A and B is a third event C, written as

AB = C or AMB = C, which contains all the common elements of A and B. If
the intersection of two events is the null set, i.e. AB = ¢, then the events
are called mutually exclusive. The extension of the properties iii and iv to
more than two events is straightforward.

Before proceeding to the definition of probabilities it is important to
distinguish between two types of sample spaces, those consisting of a finite
number of sample points and those with an infinite number of sample points.
For the purposes of reliability analysis this distinction will suffice.

If the sample space contains a finite number of sample points (e.g. the

die experiment) any subset of S is an event; to each event A a non-negative

number P(A) is assigned such that P(S) = 1 and if the events Al’ AZ""’An
are mutually exclusive, i.e. AiAj = ¢ for all 1 and j, then
P(A1+A2+ e +An) = P(Al) + P(AZ) + ...+ P(An). Observe that if the mutually

k
exclusive events Al"’An exhaust the sample space, that is, S = 2: A.i the
i=1

n
above axioms imply that 2: P(Ai) = 1 and hence 0 £ P(Ai) s 1.
i=1




The most important case in reliability of a sample space with infinitely
many sample polnts 1s that of the real line. The time~to-failure of equip-
ments and systems generates such a space. Events are all the points of the
line, t = tl, and all closed or open intervals tl <t s tz or tl <t < t2
regpectively. Then probabilities are assigned just as before with an addi-

tional axiom: 1f the events A A

10 2""’An’ are mutually exclusive that is
o 0] [o.4]
AjAy = ¢ for 1, = 1,2,...n..., then P(zAi) =) P(A;).
i=1 i=1

The probabilities of events are now given in terms of the density function

f(t). This is a non-negative integrable and bounded function such that

Q0

P(S) =./” f(t)de = 1. The probability of the event A = ty Sest, is given
=00 t
by P(A) = “{P 2f(t)dt. Taking t, = t; + ¢ and letting € -+ 0 it is easy to
1

see that P(t = t.) = 0, It is clear then that P(t1 <t < t2) = P(tl <t < tz).

D
One of the axloms in the definition of probability concerns the union of
mutually exclusive events. In general the events are not mutually exclusive
and the probability of their union is given by a different formula. For two
events A and B this formula is
P(A+B) = P(A) + P(B) - P(4B). (2.1)
This relation becomes complicated if more than two events are involved. Thus

the probability that at least one of the events A ,A ..,An occurs is

l) 2"
Sra - 33
PA.+A +...+A) = P(A,) - P(A,A,) +
1Ty =10 1 i3 s T
N-2 N-1 N "
DD VEND VR IO W IEIE N C VRl JOW WS (2.2)

1=1 j=1i+1 k=1+2
In practice such a formula is rarely used as it stands. Very often the main
contribution to the sum comes from the first several terms. By truncating

the serles bounds are readily obtained, such as




N
P 3 AT ) BCA)

i=1 i=1
N N N-1 N

P YAz 3 R - 3, ) P(AA) ete. (2.3)
i=1 i=1 i=1 j=1i+1

Finally the concept of conditional probabilities is introduced: If

P(B) # 0, the conditional probability of the event A under the hypothesis B

P (AB
P(B)

theorems of probabilities hold also for conditional probabilities; for

(or, given that B has occurred) is defined by P(A/B) = All the
example

P (A+B/C) = P(A/C)+P(B/C) - P(AB/C)
If two events are mutually exclusive, then P(A/B) = P(B/A) = 0, since
P(AB) = 0. If P(AB) = P(A)P(B), the events A and B are called (stochastically)
independent

As an example of the use of conditional probabilities, assume that the
probability density function of the time-to-~fallure of an equipment 1s f(t).

Then the (a priori) probability that failure will occur in the interval

t2

£ <t <ty is P(t; <t <ty =f £(t)dt. This is the probability of the
t
1

event "the failure will occur after time t. and before time t2". A question

1

"assuming that the equipment has already survived

that could be asked now is

past the time tl’ what is the probability that it will fall before time t2?"

This is now a” conditional probability the hypothesis being that t > tl. In
mathematical terms this is interpreted as P(tl <t < t2/t > tl). But
t
2
. - . ‘£1 f(t)dt
P(t > tl) = j; f(t)dt, therefore P(t1 <t < t2[ t > tl)= —— .
1 f f(t)dt
t1
If the events Al,...,An are mutually exclusive and Ai+"'+Ah = § (the
sample space), an event B can be analyzed in a unique way as B=BAI+BA2+...+BAN.




From this it follows that P(B) = P(B/Al)P(Al) + P(B/AZ)P(AZ) +...+P(B/AN)P(AN).

P(A;B)  P(B/AIP(4)
P(B) P (B)

B(A. /B) = P(B/Ai)P(Ai) . '
1 =X » Bayes' theorem (2.4)

E P(B/A;)P(A,)

Furthermore P(Ai/B) = or, using the expression for P(B):

2.A.3 Random Variables and Distribution Functions

We have ldentified each possible outcome of an experiment with a point in
the sample space. Sets of sample points form events. One way of describing
events 1s simply to state in words what they represent, e.g. the event "heads"
in the experiment of tossing a coiln, the event "failure occurs before time t"
in the study of equipment failure etc.

This way of identifying events 1s inconvenient especially in cases where
the description of an event i1s lengthy. To simplify things we assign a number
to each sample point through a unique way, that 1s we define a function on the
sample space. Such a function is called a random variable (or, varlate).

As an example consider the fallure of equipments; the sample space consists
of two points: the equipment is functioning and the equipment is failed. A
random variable which is often defined on this space is

1 the equipment is functioning

0 the equipment is failed
In the experiment with the die an obvious random - ariable is simpl s the number
showing on the die, that is X takes on the values {1,2,3,4,5,6}.
Such random variables which take on a countable number of values are
called discrete random variables and they are defined on discrete sample spaces.
If the sample space 13 continuous (e.g. the real line) the random variable

will also be continuous and it will take on any value in an interval. For
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example, the time~to-failure of an item is a continuous random variable
defined on the positive real axis.

The representation of events is now greatly simplified with the use of
inequalities. Given a random variable X and a number x the notation X £ x
implies the event consisting of all the sample points at which X takes on
values less than or equal to x., With this event we associate a function
which equals the probability of the event, that is

F(x) = P(X < x)
and we call it the (cumulative) distribution function of the random variable X.

From this definition the following properties of distribution functions

are clear:

lim F(x) = 0
X > - @

lim F(x) = 1
X > ®

Furthermore F(x) 1s a nondecreasing function of x.

This definition holds for both discrete and continuous random variables.
However the information provided by the distribution function may not be
enough; we may want to know the probability that X = x (for a discrete random
variable) or that X falls between x and x + Ax (for a continuous random vari-
able). For this kind of information we must distinguish between discrete and
continuous random variable.

The probability function (or probability distriﬁution) of a discrete
random variable X is defined as

p(x) = PX = x)
and is related to the distribution function by

F(x) = 2 Px;)
all

X,<X
1

11




Notice that

2, px) =1
all Xy

As an example we return to the familiar die experiment; assuming that

all outcomes are equally likely we have the probability function

px) =% , X=i=1,2 ..., 6.
Then F(3) = P(X £ 3) = P(1) + P(2) + P(3) =%

For a continuous variate we define its probability density function (or
gimply, the density function) as (see also 2.A.2)

dF (x)

f(x) = T

x o
Then, clearly, F(x) =.I.f(x)dx and.J~f(x)dx = F(®) = 1, The density function
itself does not have a probabilistic meaning, however f(x)Ax is the probability
that the random variable x falls in the interval (x,x+Ax).

Distributions of continuous random variable are used extensively in

2,6,7,8,9 Thus, we

reliability as models of the time-to-fallure of systems.
use the symbol T for the random variable time—to—faiiure, which has range
from 0 to ©, and we define several quantities of interest in the study of
failures.

| If F(t) is the distribution function of the time-~to-failure of an equip-

ment, then the function

R(t) = 1 - F(t) = ff(”l‘)d’l.‘
t

is the probability that the equipment will not fall up to time t and it is
called its reliability. F(t) is sometimes referred to as the unreliability
of the equipment.

Another important function is the hazard rate (or instantaneous failure

rate, or failure rate function) which is defined as

12




£(e)  _ f(©)
1-F(t) R(t)

h(t) = (2.5)

Its interpretation is that if the equipment has not failed up to tlme t then
the probability that it will fail between t and t + At is h(t)At, that is,
it 1is a conditional probability.

From the definition it follows that

j;t h(t)dT
F(t) =1-e (2.6)
ft h(t)dT
and R(t) = €° (2.7)
Notice also that h(t) = - R%t) dgét) E gi%%ﬁil

There is one point which should be clarified here; the expression h(t)At
is a conditional probability of failure in (t, t + At), but h(t) should not be
interpreted as a probability density.z’lo’ll

To see the difference we need the notion of a conditional probability

density. From the discussion in (2.A.2) the conditional distribution of the

time—-to-failure of a system given that it has survived past the fixed time t

1

is t

ff(T)dT

t1 F(t)—F(tl) |

0o, t <ty
Then the conditional failure density is

dFele) A

f(t/ty) = at 1-F(t,) °’ 1
1 1
0 t < tl

The conditional density has all the properties of a probability density, for

example o

P(t Zt*/tZt)=ff(T/t)dT , t¥ »t
1 A 1 1

13




: %
is the probability that the system will fail after time t given that it has
survived up to time tl.

Observe that if the time t. is allowed to vary so as tl = ¢, then the

1
hazard rate results, that is, h(t) = £(t/t), but this is not a conditional

density anymore because the condition changes with the variable. A conse~-

quence of this is that f(t/tl) being a density satisfies

o]

j f(t/tl)dt = 1
[

while for the hazard rate we have

fh(t)dt + ©
(o]

as it can be seen from the fact that

F(®) = 1 = exp <—f h(t) dt>= 1

o]

2.A.4., Measures of Central Tendency and Dispersion

Of great interest in the study of populations are certain quantities
which are not as detailed as the distributions but summarize important infor-
mation about them and give a feeling to the analyst of the most important
properties of the population.

The most widely used is the expected value (or mean, or arithmetic mean,

or average), which is defined as

00
J. xf(x)dx, for a continuocus random variable

(SNo o)

m = E[X]

2: x.p(x,) , for a discrete random variable
i i
all Xy
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1f the density function (or the probability distribution) is interpreted
as a mass distribution, then the expected value corresponds to the center of
gravity of the distyibution,

Notice that it is possible that the random variable never takes on 1ts
expected value. For example, when tossing an ideal coin we may describe the
outcomes through the random variable.

1 for '"heads"

0 for "tails"
Thus p(1l) = p(0) = 1/2 and E[X] = 1 * p(1) + 0 - p(0) = 1/2 while the random
variable can be only 0 and 1.
Besides the expected value there two other measures of central tendency,
the median and the most likely value, which are rarely used in reliability.
The median is defined as that point X for which

F(x ) = P[X < x ] =0.5

Thus for a continuous random variable it is defined by

X
m
f f(x)dx = 0.5

and for a discrete random variable by

T plxy) - 0.5

X,SX
1 m

The most 1likely value (or mode) is defined for a discrete random variable
as the value which has the highest probability and for a continuous random
variable as the value at which the density f(x) is maximum.

The quantities defined above do not give any information regarding other
important properties of the distribution such as its spread, gymmetry, peaked-

ness, etc. These can be described with the use of the moments.
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The nth moment (or, moment about zero) of a distribution is defined as

00
.l. xnf(x)dx for a continuous random variable
=00

2: x?p(xi) for a discrete random variable
all Xy

Notice that the expected value is the first moment (for n = 1),
These moments have the disadvantage that they depend on the origin which
is arbitrarily set; once we find the mean it is more meaningful to work with

the central moments, that is, moments defined about the mean as follows:

J. (x~m)nf(x)dx for a continuous random variable

by = B[] -

z: (x.-m)np (x.) for a discrete random variable
all X + :

The second central moment (the first is zero) is of particular interest
to our work; it is called the variance of the distribution and it is a measure

of its spread. From the above definition it follows that

(o 9]
f (x-m) 2f(x)dx , X continuous
o o]
g% = M, = E[(X-—m) 2] =

2: (x —m)zp(x ), x discrete
1 i
all xi

It can be proved that the variance 1s related to the .iean and the second moment

about zero through

02 =m, - m2 = E(XZ) - EZ(X)
The square root of the variance is the standard deviation. It has the
same units with the random variable and it is used extensively as a measure of

dispersion. In the extreme case where the random variable can take on only
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one value the standard deviation is zero, as a simple calculation reveals.
In general it is not zero and, as an example, we mention that for the normal
distribution (to be defined shortly) the probability that the random variable
falls between m-30 and w+30 is 0,997, For distributions for which only the
mean and the variance is known the very general Tchebycheff inequality gives
lower bounds to the probability that the random variable will take on a value
in some interval. This inequality states that
2
Plo-v < X < m + V] 21—%— (2.8)
\%
where m is the expected value, 02 the variance and v an arbitrary number. If
V is measured in units of standard deviation, i.e. vV = ko, the inequality is
written

Plm~ko < X <m + ko] 21 - 1/1:<2 (2.9)

Therefore, for k=3 we have 1 - 15 = 0,889 and we say that there 1s a probability

3
of at least 0.889 that the random variable will fall in the interval (m-30,mt+30)

for any distribution (for the normal distribution we found that this probability
was 0.997).

The third and fourth central moments are related to the symmetry (skewness)
and peakedness (Kurtosis) of the distribution respectively, but they are not
used much in reliability,

2.A.5 Populations and Samples

Thus far the discussion concerned all possible outcomes of an experiment
which we represented by points in the sample space and we described their
properties with the use of the distribution functions; in short, we talked
about populations and their characteristics.

In practice we never deal with whole populations, but with small samples

from them, If we know the characteristics of the population it is a simple
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matter to make statements about the sample. Thus, if we know the distribution
of the time~to-failure of a certaln type of valves, we can estimate the prob-
abilities of failure as a functlon of time of a sample of n such valves.

However the problem we most often encounter 1s the inverse of the above;
given the times at which the valves of the sample falled we wish to know the
distribution of times-to-failure of the population.

12

First we need some terminology. If the random variables X .,Xn are

1
independent and they have the same density function £(x), they are said to
constitute a random sample. The n values of the above example are a random
sample. A statistic is a function of one or more random variables that does
not depend on any unknown parameter. If we estimate a characteristic of a
population from a sample, the value from the sample is the statistic and the
estimated characteristic is called a parameter,

Two very common statistics of a sample are its mean and variance. The

mean is defined as

n
5 x,
i=1 1t (2.10)

X = n

and the variance as

o, -2
2:(xi-x)
i=1

n

2 (2.11)

8 =
Out problem can now be stated in mathematical terms as follows: we know

that the random variable X has a density f(x; © ,...,en) of known “orm but

1
with unknown parameters and we wish to estimate these parameters from sample
data,

There are two methods of approach: 1) we can calculate appropriate

statistics from the sample and use them as estimates of the parameters of the

population (point estimation), and 2) using information from the sample we can

18




find ranges of the parameters 0 .,Gn, thus selecting a famlly of possible

1,..

densities £(x,0 ..,Gn). Each set of parameters yilelds a density which may

1’

be the density of the population (interval estimation).

Point Estimation

There are various way that statistics from the sample can be used as point
estimates of parameters of the population. To select the appropriate one we
have several criteria:

i) the statistic should be unbiased, that 1s its expectation value should be
the population parameter. The sample mean is an unbiased statistic, while

the sample variance is not; however with a slight modification it can become
unbiased; the appropriate form is

& -2
2:(xi—x)
i=1

n-1

2 (2.12)

S =

1i) the statistic should have variance as small as poséible (efficiency
property).

Combining these two properties we call a statistic "best" if it is
unbiased and its variance is smaller than or equal to the variance of any
other unbiased statistic for the parameter (fact which is not always easy to
establish).

The moments about zero are unbiased statistics (e.g. the sample mean)
but the central moments are not (however we changed the sample variance
slightly and it became unbiased).

Having these criteria in mind (especially the requirement that the stat-
istic be unbiased) we describe two common methods of point estimation: the
moment matching method and the maximum likelihood method.

In the moment matching method we calculate the theoretical moments of the

distribution as functions of the unknown parameters and we equate them with
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the moments of the sample. If there are n unknown parameters, this is done
for the first n moments (about zero or central) thus yieldlng a system of n
equations in n unknowns. Usually there are one or two unknown parameters and
we use the mean or the mean and the (unbiased) variance respectively.

In the maximum likelihood method we take as estimate of each parameter
the value which is most likely on the basis of the available data. In mathe-

matical terms, suppose we have a random sample X ..,Xn‘from a denslty f£(x;0).

1°*°
We form the likelihood function
n
CHE SR 1I=I1 £(x,;0) (2.13)

We now consider the xi's as constants and 0 as a variable. The maximum like-

lihood estimate of 6 is the value which maximizes L(0; xl,...,xn). As an
example, suppose that the density function of the time-to-fallure of a popula-
tion 1is

-t/0

£f(e;0) = %-e (exponential density).

and that we have the sample T,, T ""’Tn (that is n items failed at these

1?72
times).
Then the likelihood function is
: 5
L(B; T.y.0.,T ) = — exp (—— T.)/e
1 n on =1
The maximum of L is found by simple differentiation and the estimate of 0 is
n
>

i=1

~
f =

n

which is the sample mean.
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Interval Estimation

Here we do not give an estimate of the parameters but a range of possible
values, This defines a family of possible population distributions. The
degree of certalnty that we have in our assertion that the parameters lie in
a certain interval is called confidence level. So, we may claim that the
mean time~to-failure (MITF) of a population is between 5 x 106 hr., and 9 k lO6
hr. at a 907 confidence level; this means that if we test many samples from
the population, then their MTTF will fall in the above interval 90% of the time,

The mathematics of interval estimation is quite involved and will be

introduced in subsequent sections.

2.A.6 Some Useful Distributions

We examine briefly several distributions of discrete and continuous type
which we will frequently encounter. Their particular uses in the study of
failures and in reliability will be given in more detall in subsequent chapters;
here we state only thelr definitions and the underlying assumptions in each one.

Discrete Distributions

1. The Binomial Distribution

p(r) = (n

— ! -
r) p (1-p)"F = 2 pT(1-p) T

r!(n-r)!
where r = 0, 1,...,mand 0 < p <1
X /n\_r n-r
F(x) = E <r>p (1-p) , x=20, 1,...,n
r=0
_ 2
m=mnp , O =np(l-p)
The binomial distribution is used when an experiment can have only two
outcomes (which are, naturally, mutually exclusive and exhaustive, like success-

failure, heads-tails etc.); the probability of, say, success Is p and of failure

1-p. The experiment is repeated n times and p 1s assumed constant throughout
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(Bernoulli trials); then p(r) gives the probabllity of exactly r successes
in n trials and F(x) the probability of at most x successes.

If we set q = 1-p, it 1s useful to notlce that

n & /) ron-r
(p+q) " = E(r) pq
r=0

Suppose that we have three ldentical units working in parallel; each has

a probability p of functioning properly and a probabllity q of not functioning.
"

The system is working if at least two units are "up". It 1s an easy matter to

find the reliability of the system using the expansion

3 3 2 2 3

(ptq)” = p~ +3p" q+ 3pg" +q7.
The first and second terms glve the probabilities of no failure and one failure
respectively. Thus the reliability is

R=p3+3p2q
while the probability of system fallure (umnreliability) is

F=3pq>+q.

Finally we point out the binomial distribution has two parameters, the

probability of "success'" p and the number of trials n.

2. The Hypergeometric Distribution

K (N—k)
p(r) T n-=r

= (N) T 0, 1,...,m, r <k
n n-r <Nk
x
F(x) = E p(r) x =0, 1,...5n
r=0
ok o2 nk(g—k) (N-n)
N° (N-1)

22




Inherent in the binomial distribution 1s the assumption that the n trials
are made when there is a possibility of infinite trials; for example, we can
view the n coin tossings as a sample from an infinlte number of tossings,

Suppose now that the underlying population is not infinite and the sample
of n trials is drawn from a population of N possible trials of which k are
"success', then the probability function p(r) of the hypergeometric distribu-
tion gives the probability of exactly r successes Iin the sample.

The word "trial" may be replaced by the word "unit" and then p(r) gives
the probability of exactly r "good" units in a sample of n units drawn from a
lot of N units of which k are '"good".

The hypergeometric distribution has three parameters, N, n and k. When
n < < N (so that the drawn sample can be considered as drawn from an infinite

lot), it approaches the binomial distribution with parameters n and p = % .

3. The Geometric Distribution

p(r) = (1-p)* Y r=1, 2,..., 0<pcs1
s r-1
F(x) = 2. (1-p)" 'p
=]
m =-J—" s 0‘2 =k2.
P p2

Again we deal with Bernoulli trials; p(r) is the probability of exactly
(r-1) failures preceding the first success (p is the probability of success

and it is the only parameter of the distribution).
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4., The Pascal Distribution

r+te=1 s -
p(x) = p (1-p) R r=0, 1,00, ¢ a8=1, 2,
T
0sp<l
X
F(x) = 3, p(x)
r=0
m=S 1'— , O_2zS 1;
P P

Once more we deal with Bernoulll trials in which the probability of

success is p. Then p(r) is the probability of exactly r fallures and s

e 00

successes in a total of r + s trials where the last trial is a success., There

are two parameters of the distribution: p and sg.

Using the equality

rt+s=1 /78
= (-1
r r
we can rewrite the probability function as

-s
p(r) =< >ps(-1+p)r

r

If s is equal to one the Pascal distribution reduces to the geometric

distribution (with a slight modification: r faillures, instead of (r-1),

precede the first success).

5. The Poisson Distribution

T
p(r) = e—>\t i%%l— , A>0 , r=20, 1,...
X
F(x) = 2 p(r) . x =0, 1, ...
r=0
m = At , 0% =t
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The Poisson distribution describes phenomena which are of different
nature from the ones described by the other discrete distributions. We mno
longer need the notlion of Bermoulli trilals, in fact such a notion is not
meaningful when we talk about events like radioactive disintegration, number
of persons arriying randomly at a bus-stop etc. Assuming that the rate of
occurrence of the events is a constant A we interpret p(r) as the probability
that exactly r events will take place in the interval t.

The model can also be used when we deal with random events in the plane
or space as long as the density A of the points is a constant (for example
A may be the number of flows per unit volume of a material).,

The term

p0) = e Mt

is of special interest, since it represents the probability of no occurrence
in the interval t, while the probability of at least one event in t is 1 - e—At.
(The term e-'>\t can also be viewed upon as a continuous distribution of times t
and then it is called the exponential distribution; it is very important in
reliability and it will be examined in detail later).

Finally we note that the Poisson distribution can be used as an approxi-

mation to the binomial distribution with At = np for n + « and p =+ 0.

Continuous Distributions

1. The Normal (Gaussian) Distribution

2
t-m
exp —'S———%—

1
J 2o 20

-0 < t < oo

f(t) =

-0 < m < ™ 0 < g < x

t

2
F(t) = — fexp —(—T—‘%— dt
VvV 2TG e 20
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The normal distribution is one of the most widely used. It has two
parameters: the mean m, which specifies its position on the real axis (loca-
tion parameter) and the variance 02, which determines its spread (scaling
parameter). The distribution is symmetric (bell-shaped) about the mean
(Fig. 2.1).

If we define the new variable

£-m

5 (standard normal random variable)

y‘=

we observe that 1ts distribution is again normal, i.e.

1 Z '
£(y) = 5 exp - - (2.14)

but now there are no unknown parameters in f(y) (or, equivalently,

g = 1), This is helpful since we can tabulate the distribution function F(y)
(ref. 4, 12) and a simple change of variables from y to t will yield values
of F(t).

The great applicability of the normal distribution is due to a very general
central limit theorem, which states that, under very general assumptions, the
mean of a sample of n independent random variables which follow the same or
even different distributions with finite mean and variance is normally distrib-
uted for large n. Therefore, 1f a random variable can be considered as the
result of many independent causes, none of which dominates, then it is normally
distributed. This property is used in the study of wear-out of equipments.

2, The Log-Normal Distribution

2
f(t) = exp [— SAEEEQl—}
2mRt 28
- ® < g < ® R g >0 ’ t=z20
2 2 2
_ T2 2 2B (es _1)
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Figure 2.1. The Normal Distribution.

Figure 2,2, The Log-normal Distribution.
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The random variable T has a log-normal distribution, if 1its
logarithm follows a normal distribution., As shown in Fig. 2.2 the distribu-
tion is skewed to the right. It has two parameters: d specifying 1ts scale
and B specifying its shape. A location parameter can be introduced by sub-
stituting t=y for t in the density function. Then the range of ¢t is t = v.

The log-normal distribution 1s used as a model of fallure and repailr.
The justification for using the log-normal distribution comes from another
central limit theorem, which states that the product of n independent random
variables is a log-normally distributed random variable fot large n

3. The Gamma Distribution

A N R |
T (2) £t e t s t=z 0, r > 0, A>0
£(t) = 0, otherwise
r t
_ A f -1 -Xt
F(t) = D) O T e drt
r 2 T
m = 'X » g = ——}\2

‘and the gamma function is defined as

o]

I'(e) = f xr—l e-'x dx
0

which; for r a positivé integer, reduces to

T(r) = (-1

The gamma distribution is obeyed by random variables which are defined
on half the real axis., It has two parameters, A and r, and it can take many
shapes for various values of the parameters (Fig. 2.3). For r £ 1 it is con-

cave upwards while for r > 1 it is concave downwards with a maximim dt t =

28
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f(t)

O t

Figure 2.3. Shapes of the Gamma Distribution for the Two Different Ranges of r.

Figure 2.4, Extreme Value Distributions
A. Type | Asymptotic Distribution of Minimum Values.
B. Typel Asymptotic Distribution of Maximum Values.

29




The physical situvatlons where the gamma distribution 1s used are when
events are occurring at a constant rate A and we are Interested in the dis-
tribution of the time it takes for r events to occur (this interpretation
implies that v is a positive integer, while the given definition does not
require this restriction. A non-integer r could result from experimental
data, although usually it is rounded off. When r is a positive integer the
gamma distribution is also called Erlangian).

As the number r of events increases the distribution becomes more and
more symmetrical and for large r it can be approximated by a normal distribu-
tion with the same mean and variance.

Tables of the distribution function F(t) (incomplete gamma function) can
be found in Ref. 13,

4, The Chi-square Distribution.

S én/Z)—l e_t/2 tz0 s n positive integer
'(5)
2
£(t) =
o, otherwise
m=n 0 02 = 2n

The chi-square is a special case of the gamma distribution for A =-% and

R where n is a positive integer. The parameter n is quite arbitrarily

E»

called "degrees of freedom" and a usual notation is Xz(n) meaning that the

r =

random variable has a chi-square distribution with n degrees of freedom.
Tables with values of the chi-square distribution can be fount in many

textbooks on statistics and reliability.4’9’12’13’14

As an application we
consider the goodness-~of-fit problem, that is, we have experimental data and
we wish to determine whether these data can be assumed to come from a theo~

retical distribution. The data come as observed frequencles of events and

for the same events the assumed distribution predicts different, in general,
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frequencies. A goodness—of-fit test determlnes whether these differences are
due to chance or our assumption is wrong. One such test is as follows: from
the theoretical frequency f& and the observed frequency fg of the kth event
(or category) we find the value

2
2 & (fi - fg)
X* = 2, =
k=1

fk
t

where N is the number of events. The degrees of freedom will be K-1, if no
parameter used in the test is calculated from the test data (we use N-1
because the assumption of a distribution, from which the fE are found, results
to a loss of one degree of freedom). Having the X2 value and the degrees of
freedom we find from tables what is the probability of such a value being due
to chance and accordingly we accept or reject our assumption about the theo-
retical distribution. For example, suppose we toss a coin 100 times and we
observe 42 times '"heads" and 58 times ''tails'". We wish to check whether it

is reasonable to assume that the coin is ideal, that is, whether there is a

theoretical probability of 1/2 for heads and tails. Then we have ft = 58,

0
fg = 42, fz = 50, fz = 50, N = 2 and
2 2
2 (58-500% . (42-50)° _

The degrees of freedom are n =N - 1 =1, From tables9 we see that, the prob-
ability that a value of at least Xz = 2,56 with n = 1 is due to chance, is
only about 0.12, On this basis we would probably decide that the coin was not
ideal,

5. The (Negative) Exponential Distribution
-\t

f(t) = Xe A >0, t=0
F(t) = l1-e At

1 2 1
m =5 y 0 =—

A AZ
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This is also a speclal case of the gamma distribution for r = 1, that 1s,
it is the distribution of the time for one event to occur, when the events
take place at a constant rate A. Changing the words a little we can also
interpret it as the distributlion of the time between successive events, when
the events occur at a constant rate A.

6. The Beta Distribution

[(o + B)  a-1 (l__t)B-l , 0>0,8>0,0s5 ¢t<1

© T'(a)T(B)
f(t) =
0 otherwise.
t
F(t) = %‘&:_);:T%" 'g 2 @nP g 0sts<1
o 2 oB

m=———8— » g =

- 2
(otB) “(a+B+1)
The beta distribution can be used when the random variable takes values
in an internal. The formulas given above are for the interval [0,1]; if the

random variable is limited in [to,tl], we map this interval on [0,1] by the
t=t

transformation t' = "t and we use the above formulas.
1 0
The distribution function F(t) (incomplete beta function) has been

t

tabulated in Ref. 15.

7. Extreme Value Distributions

In this category of distributions fhe random variable must be carefully
specified.

Consider a random variable X, its density ¢(x) and distribution function
d(x). We select a sample of n values #l’ Xoseoes xn from the domain of X and
It is

on this sample we identify the maximum (or minimum) value X (xmin).

ax
clear that by selecting another sample of n values the maximum (minimum) ele-

ment in it will, in general, be different from that of the first sample.
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This leads us to define a new random variable Xmax (Xmin)’ which is the largest
(smallest) value of X in a sample of size n from an initial distribution ¢(x).
We seek the distribution of this new random variable X X ..
max T min

As an example consider the floods from a river. The random variable X
is the (average) daily discharge of the river. The sample is a year, that is,
n = 365 days. In this sample we call the largest discharge a flood and it is
the new random variable Xmax' Our problem is to find the distribution of
floods over the years.

Knowing the initial distribution ®(x) it is easy to calculate the dis-
tribution of maximum values from samples of size n (Ref. 16). Recalling the

probabilistic meaning of distribution functions we get

Fx ) = q>“(xmax) (2.15)

and the density is

dF(Xmax) n~-1
f(Xmax) = dx = nd (Xmax) ¢(Xmax)'
max

Similarly for the minimum values we get

F(Xmin)

n

n
1 - [1 - @(Xmin)] (2.16)

and
n-1

f(Xmin)

n [1- <I)(xmin)] ¢(xmin)

However, more general results can be obtained for large sizes, in which
case only general properties of the initial distribution are required and not
its exact form. These asymptotic results are very useful in practice and we
4,16,17

examine them in detail.

Type I asymptotic distribution of maximum values

The requirement we impose on the initial distribution ®(x) is that it

should be of exponential type, that is, it should tend to unity for increasing
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x at least as rapldly as an exponential. This is a quite general condition
and several common distributions satisfy it like the gamma (and, naturally,
the exponential and the chi-square), the normal and the log-normal distribu-
tions. For such initial distributions the maximum values of large samples of
independent values follow the distribution (we drop the subscripts max and min
and we use the variable t)

£(t) = a exp [~ a(t - B) - e_u(t_e)]

for - @ < t < ® R - ® < f <

and F(t) = expl- e—a(t_B)]

Tables of values of F(t) can be found in Ref. 18. The floods mentioned before
follow this distribution.

Type I asymptotic distribution of minimum values

The requirement here is that the initial distributioné(x) should tend to

zero as x > — © at least as fast as an exponential., The normal distribution
satisfies this condition. The distribution of the minimum values of large
samples 1s then

eOL(t-B)

f(t) = a exp [o(t-B) - ]

for - ® < t < ® . -0 < B < o

and ed(t—B)

F(t) =1 - e
This distribution is used in series systems where the rule16 "no chain is
stronger then its weakest link" applies. For example, 1f n elements are
connected in series the system will fail when the least reliable element fails.

For these distributions we can define the mean and variance as usual.

Thus the mean for maximum values is B + 94511 and for minimum values B - 94511,
while the variance is the same for both distributions and equal to l4§%§.
o)
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The shape of the distributions can be seen in Fig. 2.4 and it is always the
same, since there is no shape parameter (0 1s a scaling parameter and B a
location parameter).

Notice that the asymptotic results are true for large samples of indepen-
dent values. This may cause some hesitatlon occasionally, when the values
are not Independent; for example the discharge of a river one day is not
always independent from the discharge of the previous day. But the samples
are usually so large that another sample of truly independent values can be
selected whiéh will still be large enough for the asymptotic results to apply
(we can select, for instance, 150 independent daily discharges from the 365
of the year).

Another useful extreme value distribution i1s examined in the following
section,

8. The Weibull Distribution

N o-1 £\
% (g) exp (- (§> for t 20, 00> 0, B>0

0 otherwise

f(t) =

~(t/B)°
e

F(t) 1 -

L I (S LRI

This 1s also called Type III asymptotic distribution of minimum values.

]

The initial distribution should be bounded at the left, like, for example,
the gamma distribution. Therefore, we use the Welbull distribution for the
distribution of the minimum values of large samples of independent values,
when the initial distribution is gamma, while we use the Type I distribution
of minimum values, when the initial distribution 1s of exponential type

(normal).
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The distribution, as given above, has two parameters, the scaling
parameter B and the shape parameter o (see also Fig. 2.5). A location param-
eter Y can be introduced by substituting t - Yy for t in the given formulas.
For oo = 1 the Welbull distribution reduces to the exponential distributilon.

9, Student's t Distribution

In 2.A.5 we discussed the interval estimation of the parameters of a
distribution., Also we gave formulas for the calculation of the mean x and
the (unbiased) standard deviation s of a sample.

Student's distribution is used to find confidence intervals for the mean
of a normal distribution. The means x from samples of size n are normally
distributed (central limit theorem) with mean the population mean m and
standard deviation 9;3 Very often though ¢ is not known but estimated from

Vn

, — . 8
the sample (s). Then the standard deviation of the means x is — but it is
n
no longer accurate to assume thelr distribution to be normal. However, it can

be proved that the variable

follows Student's t~distribution. This can be used to yield bounds for m and
confidence levels, for example, how certain we are that the true population

mean m lies in the interval

- s
x * tcx,r\—//_:

The value of ta . can be found from tables of the t distribution
H]

4,9,12
once

the confidence level 1-o and the degrees of freedom r are given. The value
of r 1s n-1, Some examples will clarify the procedure.
Suppose we calculate x and s from a sample of size n = 15, Then r = 14

and for a confidence level of 0.95 = 1 -~ 0, that is a = 0.05, we find from
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f(t)

a<|

t

Figure 2.5. Shapes of the Weibull Distribution for the Two Different Ranges of «.
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tables that t 2.145, Then we say that if we take many samples and

0.05,14
we calculate thelr mean, then 95% of the time the mean will fall in the inter-
val,

— 8
x * 2,145 —

V15

Instead of using so many words we simply say that the population mean lies in
the above interval at a confidence level of 95%.

When we speclfy an interval for the mean we call the confidence level a
two-sided confidence level., One~sided confidence levels can be found from

similar table of ta . values and they will be of the form

¢ 8_
oa,r\/n' ¢

g
+ o .
ta,r . s upper bound

In the above example we find that the value of to 05.14 for one-sided
e 3

level is 1.761 and we claim that 95% of the time the sample mean will be

lower bound

and x

greater than x - 1.761 -2 or smaller than x + 1.761 —=,
15 v15
The t-distribution is also used to test hypotheses related to means as
we will see in the following section.

2.A.7 Tests of Hypotheses

We have already encountered the two principal areas of statistical
inference. In the point and interval estimation of parameters we described
methods for estimating the parameters of distribut’ons from information con-
tained in samples. In the discussion of chi-square distribution the problem
was of a different kind; we assumed a theoretical distribution and we performed
a test to check whether it was reasonable to accept that the sample data came
from that distribution. This problem falls in the category of statistical

hypotheses.
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Another example of a hypothesis could involve assumptions about the
parameters of a known distribution. For example, a change in the production
" process of a certain equipment is expected to increase the mean m of a cer-
taln characteristic while the varlance remains unaltered (assume normal dis-
tribution). Then we form two hypotheses:

H.: m< m,, the so-called null hypothesis expressing the possibility of no

0 0’

improvement, and
le m > LY the alternative hypothesis.
Of course we will need a test which will enable us to accept or reject HO.
Thus we have the two definitions:12 An assertion about the distribution of
one or more random variables 1s called a statistical hypothesis. The
acceptance or rejection of a hypothesis from information contained in a sample
is based on certain rules which are called a statistical test.

From the above it is clear that there is a possibility that we may reject
HO while actually it is true; this is called a type 1 error or the producer's

risk. The reason for the last name is that when we test a lot of equipments

for their quality, the null hypothesis H_  is that the lot is '"good", so by

0
rejecting it the producer loses.

The other kind of error we can make 1s to accept H, while actually it is

0
not true; this is the type 2 error or the consumer's risk, the last name being
justified by arguments similar to those in the previous paragraph.

It 18 customary to give percentages for these e?rors. We say that the
producer's risk is 1000, per cent and the consumer's risk is 1008 per cent and
we mean that 1000 per cent of the time we will reject HO’ while it 1s true,

and 1008 per cent of the time we will accept H,, while it is wrong. By taking

0
large samples we can be more confident about our judgement and thus reduce

o and B.
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A few examples will give a better picture of these concepts. For more
complete discussions of the mathematical aspects of statistlcal hypotheses
the reader is referred to Ref, 12; useful applications can be found in
References 6 and 9.

Suppose we have a lot of N equipments of which S are '"good". The number
S is unknown and we take a sample of n equipments to decide whether we will
accept the lot or mot. In Ref. 6 (Tables 13.2 through 13.4) the hypergeometric
distribution is used to produce tables which, for a lot of size N, sample size
n and the hypothesis that the lot will be accepted if ¢ or less equipments
are found defective in the sample, give the percentages in the lots which will
be accepted (1-0)100 per cent of the time and 1008 per cent of the time. The
producer's risk is set at o = 0.05 and the consumer's risk at § = 0;10. Thus
for a lot of N = 60 equipments and a sample size n = 10 we decide to accept
the lot if the number of defectives in the sample is less than or equal to
¢ =1, Table 13,3, then says that the producer has the risk to have the lot
rejected 5 per cent of the time when it has 4.27 defectives. On the other
hand the consumer has the risk of accepting the lot 10 per cent of the time
with 327 defective items in it.

Another example involves the mean of a normal distribution. At a certain

time we have reason to believe that the mean m has changed from its known

value Wys while the variance is the same but unknown. We take a sample of 9
Ix -
size n and we calculate the mean x = —;i and the unbiased variance s2 = §£§E§l—.

The null hypothesis is:

HO: m = m, (the mean has not changed)

and the alternative hypothesls is:
le m # m. (the mean has changed).

We seek a test to decide whether to accept Ho and we are willing to be in
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error rejecting it (while it is correct) 5 per cent of the time (that is

a = 0.05). We do not specify the type 2 error. We know that the variable

K-

follows Student's t-distribution with n-1 degrees of freedom. From tables we
find the value ta,n—l (two-sided) and this represents the maximum allowable

value of (t) which can be due to chance at a confidence level of (1-0) 100 per
cent.  Thus the hypothesis H0 is rejected if (t) > td,n—l'

Other types of hypotheses and their handling will be found in later

chapters.
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2.8, THE FAILURE OF COMPONENTS

2.B.1 Introduction

It is a well-known fact that all devices or systems undergo fallures of
gome kind due to various reasons, lilke manufacturing defects, very high stres-
ses, unfavorable environmental conditions, degradation of strength due to
aging, etc.

0f great importancé in reliability and safety studles 1s the time-to-
failure of a unlt, that is the time it takes for a unit which 1s as good as
new to fail (for repalrable items the time between two successive failures is
of interest, but we do not consider repalr here). To predict the exact time
of fallure 1s a rather impossible task considering the many causes that can
lead to 1t and the vast amount of information we would need. However a mathe-
matical theory of failure can be developed with models which approximate the
real situation. Of course, 1t comes as no surprise that such models are prob-
abilistic in nature and reiy heavily on Probability Theory and Statistics.

The above comments are very vague for quantitative analysis., To be pre-
cise we proceed to several definitions. When we talk about "units', or "ele-

"components', we agree to view them as single enti-

ments", or "devices", or
ties and we completely ignore the fact that perhaps a particular unit consists
of other parts. Every such component has been manufactured to perform a cer-
tain function; 1f, for any reason, the unit 18 not able to perform this
gpecific function under its prespecified operational conditions, we will say
that a failure has occurred.

To express the probability of fallure as a function of time extensive use
of distribution functions will be made. (see 2.,A.3) The distribution F(t)
gives the probability that the unit will fail before t, while the density func-

tion £(t) = Qg%&l is helpful to define the probability that the device will
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fail between t and t + At, which is £(t)At. The quantity R(t) = 1-F(t) is
called the reliability of the item and it is the probability that the Iltem
will fail after time t.

Given a distribution function F(t) we define the hazard function (or

hazard rate, or failure rate) as

and we interpret it as follows: if the unlt survives up to t, then the (con-
ditional) probability that it will fail in (t, t + At) is h(t)At.

The fallure rate is very useful in helping to understand the physical
phenomenon which the distribution function describes. A typical graph is
shown in Fig. 2.6 (bathtub curve). In the burn-in period the hazard rate
decreases due to the early failures of the units with manufacturing defects.,
This period is not of interest, because special "debugging" procedures are
usually used to eliminate these defective elements (which, strictly speaking,
do not belong to the population, since their manufacturing process deviated
grossly from the design which would guarantee capabllity of performing the
specified function).

The next two regions represent the two lmportant phenomena that we will
attempt to model. In the first one the failure rate is constant meaning that
the probability of failure i1s independent of the items age. Fallures are due
to very high stresses due to chance (e.g. an accidental current surge which
causes failure of a light bulb). In the next region the probablility of failure
increases with the item's age (after several thousand hours of operation the
probability that the bulb will fail increases with time until, eventually, the
bulb burns out). The fallure is now due to wear, which is a generic term for
the accumulating irreversible changes which weaken the strength of the equip-

ment .
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Figure 2.6. Typical Failure Rate as a Function of Time.
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These two types of fallure are examined in detall in the subsequent
sectlons. Statlstical distributions are presented with thelr mathematical
properties and their applications as models of fallure and other areas of
safety,analysis. Then the general problem of analyzing sample data is consid-
ered with the assoclated statistical methods for determining the parameters
of distributions.

Finally, we point out that we do not always talk about times-to-failure
or times of successful operation. Time may not be the appropriate variable
in cases of some units like switches or rotating devices and then we resort
to such variables as cycles of operation, number of revolutions etc. Never-
theless, nothing essential changes and only slight modifications are needed
in order to adjust the models to a particular situation.

2.B.2 Statistical Distributions

We present here the statistical distributions used to describe the life-
time of components, their properties and the physical situations which lead
to them, A very detailed account 1s glven in the book of Gertsbakh and
Kordonskiy (Ref. 19); additional discussions can be found in many books on

4,3,6,7,8,9 and in Ref. 20 and 21. Some mathematical properties

reliability,
of discrete and continuous distributions were presented in Section 2.A.6 of

this report.

1. The Exponential Distribution

£(e) = e, A0
F(t) = 1 - et | R(t) = e At
h(t) = A

1
m=—A— ’ o =
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The exponential distribution is the most widely used in reliability
gtudies. What makes 1t distinctly different from the other distributions is
the constancy of the hazard function, which qualifies it as the only distribu-
tion to describe the period of 'chance fallures" of an item.

Figure 2.7 helps to clarify the physlical process that 1s modeled. The
maximum stress that the item can withstand is Smak and it 1s constant with
time. The actual stress applied is random in time and it is represented by
the zig-zag curve. Clearly a falilure occurs when the applied stress exceeds
the maximum allowable stress. Such ''peak' stresses (that is, greater than

Smax) are assumed to follow the Polsson distribution.

-t (e *

1 . A>0 . r=20, 1, ...

p(r) = e

where A is the constant rate of occurrence of peak loads and p(r) is the prob-
ability of exactly r peak loads occurring in an interval (0,t). For this
assumption to be valid the applied stress must have the following two proper-
ties19
1) asymptotic independence: the peak stresses are rare events, thus the
time interval between any two of them is big enough, so that they can be con-
sidered as independent events.
i1) stationarity: this means that the stresses are homogeneously applied
without a preferred direction (they do not gradually increase or decrease).
With the assumption of Poisson distributed peak stresses we can readlly
see that the component will not fail in the interval (0,t) if no peak stresses
occur in that interval, therefore its reliability is
R(t) = p(0) = e
and its unreliability (fallure distribution)

F(t) = 1 - R(t) = 1 - e At
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Figure 2.7.
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Stress as a Function of Time,

Failure occurs at time T due to a “‘peak”’
stress exceeding the maximum strength of
the component Smax‘
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The exponential distribution has been found particularly useful in the
description of times-to-failure of electronic devices (electron tubes, etc.).
In most reliability applications the failure rate is very small (less than

-4

10 hr_l) and for not very large times t the exponential distribution can be

approximated by

F(t) = 1 - et e

It 1s interesting to see to what results the previous line of thought
leads, when time is not the appropriate variable (e.g. we may be interested
in the number of landings it will take for an airplane until a rough one occurs
which leads to failure of some of its equipments,19 or the number of startings
of a Diesel engine until it fails, etc.)

In this case A is not the mean rate of occurrence of peak stresses but
the probability of the unfavorable event (rough landing, engine doesnot start).

In lieu of the Poisson distribution we use the geometric distribution

p(r) = (I-0TH , osas<1, r=1, 2
which gives the probability of (r-1) favorable events before the unfavorable
event occurs. The cumulative distribution function F(k) gives the probability
that a failure occurs in the 1St or 2nd Or ... kth event
L Lk
F(k) = El p(r) =1~ (1-})
e
and the probability that in at most k events none +ill be unfavorable (i.e.
the reliability) is
RGO = (10"
This is the probability that, for instance, either the (k+1)th, or the

(k+2)th..,. landing is rough, or in other words, that at least k landings are

"good". For A small and k big we can approximate
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R(K) = (1-0)E = ¢

and the exponential distribution reappears, but with different units for A
confirming the comments made in the introduction.

2. The Gamma Distribution

AT re1 -t

Ty t e , t=z0, vr>0, A>0
f(t) =
0 , otherwise
- t
_ A r-1 =AT
F(t) = (o) f T dt
0
or r-1 k
F(t) = 1 - (i?) e—At for =1, 2, ..
k=0
© =1
r=1
h(t) = [f (1 + %) e AT er
0
r r-1
or h(t) = A rfl T e forr=1, 2, ...
(At)
(r-1)! 1<=ZU T
= L 2 _r_
m =3 , O = Az

The gamma distribution appears to be particularly suited for the study of
fallures, since the random variable is restricted on the positive real axis.
The exponential distribution is a special case of the gamma for r = 1, The
physical interpretation of the distribution is a natural extension of that
for the exponential, i.e. the peak stresses are again Poisson distributed but
now it takes r shocks for the fallure to occur (this interpretation implies
that r is a positive integer, while the given definition does not require this
restriction. A non-integer r could result from experimental data, although
usually it is rounded off. Wﬁen r 18 a positive integer the distribution 1s

also called Erlangian).
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It follows from the above that the time-to-failure depends on how many
shocks the device has suffered, that 1s, it depends on its age. Therefore
the distribution is used in the wearout period of the componments. The hazard
function increases with time for r > 1 and it approaches A for large values

of t (Fig. 2.8). The density function is concave upwards for r < 1 and concave

downwards for r > 1 with a maximum at t £§l (Fig. 2.3).

The gamma distribution has two parameters: the scale parameter A and the
shape parameter v. A th;rd parameter Y can be introduced by replacing t with
t-y and the distribution holds for t > y. This 1s called threshold of sensitiv-
ity or guarantee time, since, before Y, no damage occurs according to the model.
Such g parameter can be introduced in all statistical models of failure which

are bounded on the left.

3. The Normal Distribution

2
1 t-m
£(t) = exp [— ]
2
V2o 20
- 0 < t < ® -0 < q < ® ’ 0 <0<

4

2T C 00 20

: 2
F(t) = \/_]L f exp [— —(T———-[%—] dt = N(%;—-)

t
1 ‘ Tz
where N(t) = —— f exp (—2—> dt
var =
The normal distribution is used as an approximation to the garma for
large r (approximately for r > 12). The physical assumptions remain the same.
At first it seems peculiar that a distribution the random variable of
which i1s allowed to be negative may be useful in life studies. However, the

normal distribution here approximates the gamma and, as such, the probability

of negative times is negligibly small, that is, only the left tall of the
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Figure 2.8. Hazard Function for the Gamma Distribution.
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distribution covers the negative axis. Of course, the normal distribution
can also be used for any random variable, which is result of many independent

causes (central 1limit theorem).

The mean and variance of the distribution are m = %-and 02 = Eiu

A

hazard function is shown in Fig. 2.9: it is an increasing function of time

The

and unbounded to the right.

4, The Log-Normal Distribution

N2
£(t) = ——  exp [__(}BE;;E)_}
Jor Bt 28
~m<g<® , B>0 , t=z20
N2 2 2
m = eOH"B /2 . 02 = e2&+8 (eB -1)

The random variable t has a log-normal distribution, if its logarithm
follows a normal distribution. The distribution is skewed to the right (Fig.
2.2) and it has two parameters: o specifying its scale and B specifying its
shape. The hazard rate (Fig. 2.10) initially increases and for large times it
tends to zero.

The usefulness of the log-normal distribution comes from a central limit
theorem, which states that the product of n independent random variablies is
a log-normally distributed random variable for large n. Such a case arises
in tné study of failures from fatigue cracks. The random variable is the
magnitude of the crack at successive times. At each time ti the magnitude

Xi is assumed to be proportional to the previous magnitude X

i~1’ i.e.,
Xp =43 X4
where the qi's are random variables (independent and not necessarily with the

same distribution), Then, according to the above-mentioned central limit theo-

rem, the random variable Xi is log-normally distributed for large i. 1In this
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Figure 2.9, Hazard Function of a Normal Distribution.
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Figure 2.10. Hazard Function of a Log-normal Distribution.
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respect, the lognormal distribution can be used to estimate the degree of
deterioration of the object. Applications Iin life studies wlll be considered
in subsequent sections.

5. The Welbull Distribution

o-1 o
E(E) exp [-(E)] , t=20 a>0
5|8 B o

£(t) =
0 . otherwise
B(e) = 1 - & CE/B)°
o fe\e]
e = § (5)

m=ESF<é+]) ; 02=82[P€4-g -r@w~g]2

The shape of the distribution can be seen in Fig. 2.5. It has two
parameters: the shape parameter o and the scaling parameter f. Its hazard
function 1is an increasing function of time for o > 1 and a decreasing function
for oo < 1 (Fig. 2.11). For o = 1 the Weibull becomes the exponential dis-
tribution with constant failure rate.

The physical interpretation of the Welbull distribution is assoclated
with the theory of extreme values. It is the distribution of the minimum
value of large samples of independent values from a gamma distribution. Such
a situation is encountered in devices which consist of many other components,
the lifetime of which is given by the same gamma distribution; the device fails
when any of its components fail, therefore its lifetime is a random variable
which is the minimum of the lifetimes of the components. It has been found
that the gamma distributions of the component lifetimes may be allowed to have

slightly different parameters and still the Weibull distripbution is applicable.
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Figure 2.11. Hazard Function of the Weibull Distribution for
Various Ranges of the Shape Parameter «.
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The Weibull distribution 1s also called Type III asymptotic distribution
of minimum values for obvious reasons. It has been used successfully to
describe the time-to-fallure of electron tubes,22 ball=bearings,23 et al.

6. Extreme Value Distributilons

Type I Asymptotic Distribution of Maximum Values

£(t) = o exp [_ a(t=B) _e—a(t—e)]
Le<t<w , -—@<B<w L, g>0
F(t) = exp —;e‘u(t—Bq
h(t) = qe 0 (t=B)
exp e-a(t—BT]_l
0.577 2 a 1.645
m=8+7y » 0= o2

Type I Asymptotlc Distribution of Minimum Values

f(t) = a exp [u(t—B) - ed(t_Bq

- oo < ¢ < © s ..oo(B(oo . a >0
_0(t=B)
F(t) =1 - e
h(t) = o eu(t_B)
m=p 0377 ;2 1.645
o, az

Extreme value distributions deal with the distribution of the maximum or
minimum value in large samples of independent values drawn from an Initlal dis-
tribution.4’l6’17

Consider a sample of size n of values Xys XoseesX from a distribution
function ¢(x). We define a new random variable T = min (xl, x2,...,xn) and we

seek the distribution of T for all possible samples of size n. Knowing ®(x)

it is readily seen that
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F(t) =P(T < t) =1~ [1~- &)™ : (2.16)

and the density function is

£e) = L -0 - a0 1M g

If T 1s defined as the maximum value of the sample, its distribution will
be

F(t) = o"(t) (2.15)
and £(t) = n 0™ L(t) ¢(r).

This approach requires knowledge of the initial distribution ®(t) and of
the sample size n. The usefulness of the asymptotic distributions lies in the
fact that such detailed knowledge is not required; the samples should be large
and the initial distribution should satisfy certain general requirements.

If the initial distribution ®(x) tends to unity as x + © at least as fast
as an exponential, the maximum values of large samples of independent values
follow the Type I asymptotic distribution of maximum values. Common distribu-
tion which satisfy this requirement are the gamma (and, naturally, the exponen-
tial and chi-square), the normal and the log-normal.

The Type I asymptotic distribution of minimum values is applicable when
the initial distribution is the normal (we have seen that when the initial
distribution is the gamma then the minimum values of large samples of indepen~
dent values follow the Weibull distribution).

One of the most well known applications of extreme value distributions

16,17 The initial variate X is the

is in the study of floods from a river.
average dally discharge of the river and its distribution is of exponential
type (that is, ®(x) + 1 for x +~ © at least as fast as an exponential). The
sample size is one year (n = 365 days); the maximum discharge in one year is

called a flood and the distribution of floods is the Type I asymptotic
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distribution of maximum values. We have required that the values of the sample
be independent and the discharge of the river in one day i1s not completely
independent from the discharge of the previous day; however, another large
sample of truly independent discharges can be selected (for example, we may
consider only 150 independent daily discharges in lien of 365).

Aﬁ interesting application of the theory of extreme values is in the

16,17,24 1. 1 been found that the experi-

study of strength of materilals.
mental strength is much smaller from the theoretical value derived from atomic
considerations. This is attributed to the existence of flows In the material
which initiate cracks that reduce its strength. The assumption is that there

is a large number of such defects which are independent and they are randomly
distributed in the material. We divide the material into a large number of
volume elements and in each volume element, there is only one crack. The size

of the crack is a random variable with a distribution of the exponential type
(for example, exponential). The strength of the material in each elementary
volume is decreased from the theoretical value by a quantity which is directly
proportional to the crack size, i.e. 8, = 85 = CXy, where 8y the actual strength,

0

s, the theoretical strength, ¢ a proportionality constant and Xy the crack size.

0

Therefore the strength of the material i1s a random variable; the breaking

strength is the minimum of s, and it corresponds to the maximum crack size Xy

i
But the maximum crack size has the Type I asymptotic'distribution of maximum
values and a simple change of variables reveals that the breaking strength
follows the Type I asymptotic distribution of minimum values.

This example involved the distribution of the material strength; another
example regarding times-to-fallure concerns the failure of surfaces due to

21,25

chemical corrosion. Initially the surface has a large number of pits with

random depths distributed according to the exponential distribution. Chemical
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corrosion causes the depth of each pit to increase untill fallure occurs due to
penetration of the surface. Assuming that the time of penetration 1s given by
ti = c(H—hi), where ¢ 1is a constant, H the surface thickness and hi the initial
depth of the ith pit, 1t is clear that the time-to-failure is equal to the
minimum of (tl,...,tn), which, of course, corresponds to the maximum of
(hl""’hn)' Just as before we find that the maximum initial depth follows
the asymptotic distribution of maximum values and, by changing variables, the
time~to-fallure obeys the asymptotic distribution of minimum values.

Fig. 2.6 shows the asymptotic distributions and Fig. 2.12 shows the hazard
functions of the extreme value distributions.

The extreme value distributions as presented above give the probability

of the sizes of the maximum (minimum) value of large samples. Thus the asymp-

totic distribution of maximum values.

F(x) = exp [— e-OL(X—B):I
when applied to the study of floods enables one to state that the probability
that the flood in any year is less than or equal to x is F(x).

However there are two other questions which remain unanswered, namely
1. How often does a flood of a certain size or greater occur?
2. What is the distribution of the floods in a period of m years?

To answer the first question the notion of the return period is introduced.
For a glven distribution function F(x) (not necessarily of the extreme value
type) the quantity 1-F(x) is the probability that the random variable will take

on a value at least x. Then the quantity
1
T(x) = v—=7= .an

is called the return period and it is the average number of observations in

which the random variable exceeds x once.  For example, in the familiar
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Figure 2.12. Hazard Functions of the Extreme Value Distributions.
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experiment with an ldeal die the probabllity of the outcome exceeding 4 is
1-F(4) =~% . Then T(4) = 3 and on the averagé the number showing on the die
will be greater than 4 once every three trials, as it is intuitively clear.

When F(x) {is the extreme value distribution and the maximum value of a
number of observations in a year i1s the random variable, then the return period
is the average number of years in which one observation of size greater than x
will be made. |

Restricting our attentlion upon the distribution of maximum values which
is most useful in applications (floods, earthquakes), it can be shown that
asymptotically the return period convérges to

T(x) = ea(x—B) (2.18)
As an example, conslider the earthquakes occurring in a region.26’38’39’40
The maximum annual magnitude has been found in many cases to be distributed
according to the distribution for maximum values. In the notation common

among earthquake engineers, it is written as

ae—Bx'

F(x) = e (2.19)

thus the most probable value is lgﬂ and in our notation we can rewrite
~B<# - l%2>
e

The return period is given by Eq. (2.17) and for large magnitudes by

F(x) = e

(using Eq. (2.18))
T(x) = é-esx (years) 2.20)

which means that it takes an average of T(x) years to observe an annual largest
earthquake of magnitude at least x.
In a number N of annual largest earthquakes the number of the ones with

magnitude at least x is
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N(x) = N[1-F(x)] = T‘(‘x) \ (2.21)

or, for large x, using Eq. (2.20),

N(x) = Na e 0% | (2.22)
Taking the logarithms of (2.22) we get

InN(x) = In(No) - Bx (2.23)
This equation has the same form as Richter's equation4l

log N(x) = a-bx "(2.24)
but the interpretation of the terms is different. In Eq. (2.23) N(x) 1s the
number of annual largest earthquakes, while in (2.24) N(x) is the number of
earthquakes with magﬁitude at least x which oecurred in a given time interval.
Details of the derivation of Eq. (2.24) may be found in the listed references.

Consider now the second question: the distribution of the maximum ele-
ments in a period of m years (for a nuclear reactor the distrIbution of floods
and of large earthquakes in its lifetime is important; here m = 40 years)

This problem is again of extreme value type; we wish to find the distribu-
tion of the largest element of samples of size m, where the initial distribu-
tion is the asymptotic distribution of ma#imum values F(;). Using the method

presented in the beginning of this section (Eq. (2.15)) we find

P 5 = ) = e (_me—a(y-8)> -

o ()

which is again the asymptotic distribution of maximum values

F_(y) = exp (—e_a(y_e'))

with B' =B+-1aﬂ

Therefore, in a perlod of m years the maximum flood will have a mean

+ 0,577 + 1om

5 and the most probable value will be

B
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Vo Llom
B! = B+ =

A confldence interval for the return period can also be given. Gumbel
calculatesl6 that there is a probability~% = 0,68 that the period will be in
the interval 0,32T(x) and 3.13T(x). Therefore, if the return period of an
earthquake of magnitude at least, say, 8 is 100 years, there is a probability
0.68 that such a big eafthquake will occur in as short a period as 32 years
or a8 long a perlod as 313 vears.

Finally we notice that 1f in the distribution of minimum values we make

the transformations t = lnt' and B = InB' we get

F(t') =1 - e—(t'/B')a, that 1s, the Weibull distyribution
Hence, the natural logarithm of a random variable which is Weibull distributed
follows the extreme value distribution of minimum values (we have seen the
same relation between the normal and log-normal distributions). This property
is used when the problem of estimation of parameters is considered.

7. Superposition of Distributions

There are many situations where the need to combine different distribu-

19,21,22 In general we can distinguish two cases: 1) more than

tions arises.,
one independent causes of failure are present, 2) the population under study
consists of several subpopulations of different characteristics.

When the equipments are under the parallel action of n independent causes

with distributions Fl(t), ceay Fn(t), the distribution of the lifetime is given

by

n
) =1- [T (1-F, (£)). (2.25)
i=1

A simple example of such a case is the period of wearout of the items. The

wearout may be modeled by an appropriate distribution (e.g. gamma, normal,
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Weibull). Clearly the possibility of a failure due to chance (high stress)
can not be ruled out therefore a superposition of the exponential distribution
and the wearout model is necessary. For example, assume that the wearout dis-

tribution is the normal with parameters m and 0, i.e,

Fi(t) = N(Ej%

)

t
2
where N(t) = f exp (_ QL) dy. (2.26)

For the exponential we have

1
2T

_ 1 _ mAt
Pz(t) =1 - ¢

Then the superposition of the two distributions leads to

F(t) = 1 - e 't [1 Y (%—‘I‘-)J

with density

2
-At 1 (t~m) t-m
f(t) = exp |~ ~—=—l+ A} 1 ~ N(———)
) {\/ZTT o [ 202 J [ o ]}

Fig. 2.13 shows a plot of this density.

The second category of problems where superposition is necessary concerns
heterogeneous populations. The population may consist of groups of components
which have different characteristics due to various reasons.

As a first example we consider two groups of items; failures are due to
chance, but the one group (proportion 100p per cent of the whole population)
is weaker than the cther (100(1-p) per cent). This situation naturally suggests
the use of two exponential distributions with different failure rates Al and
AZ (Al > AZ’ Al the failure rate of the weak group). Then the distribution

function of the population is

-\t ' ~A,t
F(t) = p(l—e 1 ) + (1-p) (1—e 2 )
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f(t) = eM {1/0\/271 exp [- (tm)2/202] + >\[1-N(‘t-m/o)]}
N>y
A
0 t

Figure 2.13. Probability Density Function of the Superposition of an
Exponential and a Normal Distribution for Two Values
of the Failure Rate of the Exponential.
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)

with density

mklt —Azt

£(t) = pA, e + (1-p) Az e

1

In the second example the one group conslsts of components in the chance-
faillure period (exponential distribution) and the other group consists of aging
items (gamma, Weibull et al). Assuming the gamma model for the aging compo-
nents, we have

k
=Alt r-1 (Azt) =X, t
F(t) =p \1-e + (1-p) 1_1§0Te

with density

r ,r-1
—Alt Az t —Azt

f(t) = pkl e + (1-p) D71 e

(r has been assumed an integer).
The density and the failure rate are shown in Figs. 2.14 and 2.15.
In the general case of n groups with failure distributions Fl(t)...Fn(t),

the distribution for the population is

F(t) = )5 py F, () (2.27)
i=1

where 100 Py is the percentage of the ith group in the population (and

n
naturally 2 pi=1).
=1

2.B.3 General Discussion of the Distributions

The distributions presented in the previous section are naturally idealiza-
tions of real situations, The fallure of equipments 1s a very complicated
phenomenon which can only be approximated under various assumptions by
statistical distributions. Even experimenfal data do not always reveal the
appropriate applicable model, because they are usually scattered in the region

of central tendency of the distributions and, with the freedom provided by the
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f(t)

f(1) = paqe i+ (1p) XtV /(r1) 1 et

Figure 2.14. Probability Density Function of the Mixing of an
Exponential With a Gamma Distribution.
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Figure 2.15. Nonmonotonic Hazard Function Resulting from
Mixing an Exponential With a Gamma Distribution.
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parameters of the distributlons, several of them can be fitted to represent
the data. In addition, the number of data points is not very large to ensure
effective use of goodness-of-fit tests. Therefore, it 18 essential, before
a distribution is selected, to understand the physics of failure and the
various effects that influence it.

There are three quantities which govern the process of faillure: 1) the
initial strength 2) the loss of strength and 3) the limiting or reference
strength. We describe briefly the nature of each of these quantities.

Initial Strength So

The term strength is used in a general sense., It may be the mechanical
strength of an object (its resistance to tension, for example), the electrical
strength (e.g. maximum voltage that a capacitor can withstand) or any quantity
which determines the successful operation of the device (for example, the
steepness of the characteristic -~ milliamperes/volt - of a lamp).

The initial strength is the value of the strength when the object is
as good as new (t = 0)., For a specific component it may be possible through
some nondestructive test to assign a specific value to So. However, in the
majority of cases the component is selected from a population of similar com=-
ponents, which makes SO a random variable., The appropriate distribution is

determined as follcws.27’28

A real object contains a large number of defects
(flows, impurities) which cause departure from the perfect atomic structure
of the material of the object. The object 1is visualized as consisting of a
large number of volume elements each one having one defect. Depending on the
gize of the defect each element (link) has a certain strength., If the weak
links receive support from the adjacent links (for example, strength of steel

under tension) then the central limit theorem can justify the use of a normal

distribution for So' Under special conditions (e.g. carefully controlled
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manufacturing) the standard deviation of the normal distribution can become
very small and 1t can be assumed that the inltial strength is constant. When
the links do not support each other the weakest link will fail first and
naturally the distributlon used is the Type I asymptotlc distribution of
minimum values or the Weibull (and its special case, the Raleigh, for 0=2;
see Ref. 8 for an application).

Finally, we must alloﬁ for the possibility of an unusually large flow
dué to bad manufacturing (faulty weld, etc.). Then the size of the flow is
the determining factor of the initial strength. The uniform distribution may
be used for S0 on the basis that, since the flow is due to error, any size is

equally 1ike1y.27

If it is established that large size flows are more unlikely
than small size ones an appropriate skewed distribution should be chosen (e.g.

the exponential),

The Loss of Strength L

The loss of strength 1s a very complicated function of the environmental
conditions and the applied stress. The stress, in turn, is a stochastic fune-
tion of time which can exhibit various p;tterns of variation (stress 1s, again
a generic term which may represent mechanical, electrical, thermal, and other
stresses) .

If the stress 1s constant in time (static stress) it may usually be well
represented by a normal distribution (justified by the central limit theorem
theorem 28’29). | |

The more general case is when the stress is an arbitrary function of time.
Then this stochastic function can be described by the two probability demsities
¢(s) and Y(t;s) where

¢(s)ds: probability that the stress amplitude falls between s and s+ds

Y(t;s)dt: probability that a stress of amplitﬁde in the interval (s, s+ds)

occurs in (t,t+dt).
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A realization of the stress is shown in Fig. 2.16. Usually, the damage
to the object occurs if the stress exceeds a limit s, (see Fig. 2,16). These
peak stresses are assumed to follow a Poisson distribution with parameter

depending on s il.e.

1,

r
XCHIOL

p(r) = e

r!
is the probability of r peak stresses in an internal of length t.
The effect of these loads to the loss of strength 1s studied by examining

the behavior of the rate of change of L (Ref. 19, 30), i.e.

d—fi‘é(ﬁ)— - v(t) (2.28)

v(t) is again a stochastlc function of time. Of course, such a detailed
calculation of the stress and the rate of wear 1s lmpossible in practice.
However, from general knowledge of the kind of stresses applied on the object,
we can estimate the form of the time dependence of the rate of wear and this,
hopefully, will eventually lead to the appropriate distribution for the life-
time. .To this end, we write the rate of wear as a product of two functions,
i.e.

v(t) = v(t) p(t) (2.29)
where v(t) is the mean rate of wear and p(t) a stationary function of time with
constant mean and‘variance. Clearly, it is the mean rate of wear v(t), which

determines the mean (permanent) loss of strength, i.e,

t
L(t) = f v(t)dt. (2.30)
0

In Fig. 2.17 the mean rate of wear is constant. The mean loss of strength
is

L(t) = vt (2.31)
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Figure 2.16. Realization of Stress as a Function of Time.
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L(t)

L(t)

Figure 2.17. Loss of Strength When the Mean Rate of
Wear is Constant.
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and the actual loss of strength exhiblts random variations gbout its mean
value. This situation approximates the case where the stress is irregular
and each peak stress as defined previously causes a certain amount of injury
on the object (cumulative damage), The number of such injuries in a certain
period of time is given by the gamma distribution.

In certain processes the mean rate of wear decreases with time (corrosion,
creep of metals and general processes where the damage 1s caused by diffusion).

Then the mean rate of wear 1s approximated aslg

V(L) = b—j':E (2.32)

leading to a logarithmic increase of L with time.

Reference Strength SR

The reference strength is defined as the limiting allowable value of the
strength. Due to the continuous loss of strength the initlal strength of the
object changeé continuously and when it gets beyond SR failure occurs.

The reference strength is usually constant although 1t may change with
time when the conditions of the use of the component change appreciably.

Having defined the three quantities governing the failure we can now
state that the lifétime of the object 1s the solution'of the equation

So - L(t) = SR (2.33)

Recalling the fact that 86 is a random variable and L(t) a stochastie
function,'it is clear that there is little hope of sblving the equation

‘exactly. However by assuming specific patterns of variation for the variables

we can make useful predictions regarding the distribution of lifetime.

1. Constant Initial Strength and Constant Applied Stress

Constant initial strength can be assumed 1f it is possible to determine it

for a specific object through some nondestructive test or if the manufacturing
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process 1s of high quality and the varilance of the distribution of the initial
strength 1s very small,

Constant applled stress can be achieved In laboratory tests, where all
the stresses can be carefully controlled. Also many electronic iltems are
operated under essentially constant stresses., The constant applied stress can
be constant in time or applied repeatedly on the object. In the first case
the deterloration 1s continuous in time and in the second it is a function of
the number of loadings (cyclic damage).

Even in this apparently simple situation the rate of wear can exhibit
markedly different behavior. If the medium in which wear occurs is highly
complex the loss of strength will agaln be a stochastic function of time.

Such a case arises in the study of corrosion, aging and creep of metals,19
where the medium is very complex and the propagation of the loss of strength
from a region to another i1s affected by the properties of that particular
region which areliandom in nature.

In certain cases the mean rate of loss of strength is constant and the
plcture of Fig. 2.17 applies (as an example we invoke the creep of metals in
the region of steady state creep; in general, in the rangé of temperature
between 0.4 and 0.7 of the melting point, metals creep with a strain rate

31). The stochastic nature of the rate of wear and the con-

nearly. constant
stancy of the mean rate of wear lead to a normal distribution for the lifetime.

We recall that the normal distribution approximates the gaﬁma distribution when

the number of "shocks" is very large (here the "shocks'" are not induced by peak

stresses; they are equivalent to the successive accumulation of loss of strength
and each shock occurs at a constant rate, since we assumed constant mean rate

of loss of strength). A case of tufbine blade failures due to creeping is

reported in Ref. 28 and the lifetimes were found to be normally distributed.
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An important case 1s when the mean rate of wear decreases with time
(Fig. 2.18). This sltuation arises when strengthening of the object occurs,
Then the loss of strength increases logarithmically with time., Such a pheno-
menon 1s observed when aging is due to some diffusion process, like diffusion
of a metal 1lnto another, oxidation of a metal, where the oxlde acts as a pro-
‘tective layer (Al), creeping of metals in the region of logarithmic creep,
et al,

In this case the lifetimes are lognormally distributed. The justification
1s just as before (it takes a large number of shocks, l.e. elementary losses
of strength, for fallure and thus the loss of strength is normally distributed;
but the loss of strength 1s a logarithmic function of time, therefore the
lifetimes are lognormally distributed). Examples of several electronic ltems
(resistors, transistors, diodes) where the lifetimes were found to fit the
lognormal distribution under constant stresses are given in Ref. 32, Degrada-
tion was foundvto occur due to some diffusion process with strengthening (for
thin resistance films, for example, the degrading process was oxidation of the
film the rate of which was decreasing with time due to the acumulation of
oxide) .

The previous cases assumed that the stress was constant in time. When
the stress 1s applied repeatedly the case of cyclic démage results. In general,

28,29,33 L oles

we expect a lognormal distribution for the cycles to failure,
of steel and aluminum wires whose lifetimes conformed with the lognormal dis-
tribution are given in Ref. 33. In Ref. 28 an example involving gear teeth
fallure under essentially constant stress 1s reported.

Finally, it is of interest to note that the varlance of the rate of loss

of strength is proportional to the square of the mean wear rate, as it can be

easily shown by taking the variance of Eq. (2.29) and recalling that the
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Figure 2,18, A Realization of the Rate of Loss of
Strength With Decreasing Mean Rate
of Wear.
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variance of p(t) 1s constant. The dmplication of this i1s that when the mean
rate of wear 1s constant the same 1s true for the varilance of v(t), while for
decreasing v(t) the variations of v(t) about the mean value v(t) decrease
(Fig. 2.18).

2. Variable Initial Strength and Constant Applied Stress

The previous discussion holds for objects of high quality the initial
strength of which 1s practically constant. However, 1f the Initial strength
varies considerably more work is needed to determine the distribution of
lifetimes,

Assume that in a lot of objects we can distinguish k groups, where the
members of each group have approximately the same initial strength. Then
knowing the distribution of time to fallure Fi(t) of each group we simply use
superposition to find the distribution for the whole population, i.e.

F(t) = igl Py Fi(t)’ where Py is the percentage of the lot belonging to the
ith group., Filg, 2.19 illustrates the situatlion when there are two groups.
The number of objects i1n each group is the same (l.e. Py =P, = 0.5) and the

first group has initial strength S_ ., and the second 502 (the reference strength

01
is the same for both groups). The objects in each group fail according to the
densities fl(t) and f2(t) (lognormal) and the failure density for the lot is
f(t) = %— fl(t) + % f2(t) .

If the initial strength is normally distributed we can use the previous
method of superposition by dividing the normal distriﬁution inté.several areas;
each group will have as initial strength an average value representative of
each area and the weighting factor will be the area itself. As an example,

assume the distribution has a mean m and standard deviation 0; a possible

division into areas is as follows:
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f(t) = %fq(t) + %fa(t)

Figure 2.19. Failure Distributions for Objects With
Different Initial Strength Under the Same
Applied Stress.
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group 1: SOl = m s Py = 0.683 (area under the curve'between m=0 and m+J)
group 2: S = m + 39 p, = 0.135
02 2 ? 2 ’
group 3: § = m + =) P, = 0.021
04 2 ? 3 ‘
group 4: S, = m - 30 p, = 0.135
04 2 i 4 :
group 5: S = m = 29 p. = 0.021
05 2 i 5

In the discussion of the initial strength of components 1t was stated that
in many practical cases we can not assume that the defects present support each
other but we must focus our attention to the weakest link of the object. For
example, the dielectric of a capacitor contains impurities which are conductive;
then the weakest link of the capacitor is the largest such impurity which causes
a reduction of the breakdown voltage of the capacitor. The same situation
appears when the strength of materials is primarily determined by the largest
defect present, as it was mentioned in the discussion of extreme value distri-
butions.

The initial strength is now described by the asymptotic distribution of
minimum values., Assuming that the lifetime is linearly related to the initial
strength, we can expect its distribution to be again the extreme value distri-
bution of minimum values (see the section on extreme value distributions,
example of failure of surfaces due to chemical corrosion in the presence of a
large number of pits).

More generally, it may be assumed that the lifetimes of each link follows
a gamma distribution and the lifetime of the object is described by the Weibull
distribution.

Naturally in a real situation the initial strength will never be of
exactly the normal or extreme-value form, As a result the lifetimes will have

a distribution which will be between the lognormal and the Weibull distributions.
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A plot of the data on Weibull and lognormal paper will help to choose the
appropriate one.

3. Constant Inltial Strength and Variable Applied Stress

The simplest case for failure under varying stress is that depicted in
Figs. 2.7 and 2.16, where failure occurs instantaneously when a random peak
occurs., The strength of the object is simply the maximum stress it can with-
stand and 1ts failure is not due to aging., The distribution of lifetimes is
naturally the exponential.

When the peaks add a single injury each time and they occur at a constant
rate, the loss of strength will be again that of Fig. 2.17 and a gamma or
normal distribution will describe the lifetimes, as it has already been
mentioned.,

If the distribution of lifetimes under constant stress 1s known and the
applied stress is a random variable of known distribution the method of super-—
position may be used. In Fig. 2,20, the simple case of devices with the same

initial strength is considered (i.e. resistors). At constant stress they

S1
fail according to the density fl(t). For a lower stress 82 the obey the den-
sity f2(t) which is more spread out. If there is a probability Py of encounter-
ing the stress S1 and P, = l—pl of operating under the stress 52, the lifetimes
will follow the density f(t) = Py fl(t) + (1—p1) fz(t).

If the stress is normally diétributed (as it can be usually assumed) we

find the weighting factors as we did in the case of variable initial strength,

4, The General Case

When all the variables are random (initial strength, stress) the problem
is extremely complicated. A detalled study of the particular situation is
necessary in order to make simplifying assumptions which will hopefully lead

to reasonable answers,
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STRENGTH

f(t) = pqfq(t) + (1p (0

Figure 2,20. Failure Distributions for Objects With the Same
Initial Strength Under Different Applied Stresses.
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Discussions of various aspects of the problem can be found in Refs. 19,
27, 28, 30 and 34.

2.B.4 The Failure Rate

The distributions examined in the previous sectlons can be used to
describe a specific behavior of the fallure of devices, like failures due to
chance or some aging mechanism., In some cases simple techniques can combine
the distributions to describe more complex situations (e.g. superposition can
combine failures due to chance and some aging law).

The general behavior of failures is very effectively studled with the use
of the hazard function (fallure rate). For convenlence we repeat here some

equations developed in Sections 2.A.3 and 2.B.1, namely

__f(e) _ £(r) _ 1 dr(t)
h(E) = 1550y * R(o) - " R(D) e (2.5)
Therefore we can express the quantities of interest as follows:
t
-f n(mar

reliability: R(t) = e 2.7)

t

—./; h(t)dTt
failure density: £(t) = h(t) e (2,34)
t

_j; h(T)dT

failure distribution: F(t) =1 -~ e (2.6)

A generic hazard function is shown in Fig. 2.6. No common distribution
function exists with failure rate exhibiting this behavior. However, the
curve can be modeled mathematically as it will be shortly shown; then, using
the assumed model for h(t) the reliability and the failure distributions can
readily be found, Some possible models are the following:
i) Piecewise~linear model. The failure rate curve (Fig. 2.6) is divided into
three distinct regions and a straight line approximates each reglon (an example
is given in Ref. 8),
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11) Composite model. Each of the three reglons 1s approximated by an
appropriate distribution. Thus the burn-in period could be represented by a
Weibull distribution with decreasing hazard function (1.e. o < 1); from tl to
t, (Fig. 2.6) an exponential model could be assumed and from t2 to ® an appro-
priate distribution with increasing failure rate,

1ii) Superposition. If it can be estimated what percentage of the population
is more likely to fail due to early faillures, chance fallures and wearout, one
can use superposition and write the density as

£(tr) = py £,(t) +p f,(t) + pwf3(t)

where fl(t), f2(t), f3(t) are densitles approximating the three regions and
Pps> Ps Py are the weighting factors for burn-in, chance faillures and wearout
(naturally, Py + P, + P, = 1). Difficulties may arise in determining the
weighting factors.

When we have fallure data we can use a slightly different approach. By
plotting the data on probability paper we may be able to identify the various
mechanisms of failure (for example, plotting on Weilbull paper we may find
distinct groups of points well fitted by straight lines, which means that
several Weilbull distributions represent the data; for am application see
Ref. 35). Then we simply find the parameters of the distribution for each
group and the sum of the hazard functions is the model for the hazard function
of the population.

The distributions and the various models for the failure rate are useful
tools in the hands of the analyst who may wish to study in detail the failures
of certain objects. However in analyzing complex systems we seldom (if ever)
use them; the exponential model is universally used and a constant failure rate

1s assigned to each component. This approximation 1s eésential if methods for
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the study of failures of complex systems, like fault trees, are to be advanced,
Then it is natural to investigate how accurate such an approximation is.

Laboratory tests or operating experlence yleld a mean time to fallure m,
which i1s uged in the exponential distribution. Of course, thls MITF is not the
result of chance failures alone. If R(t) 1s the true reliability of the com-
5,36

ponent, the following is true

R(t) > e t/M for t<m (2.35)

This inequality implies that the reliability of the component is underestimated
when the exponential distribution is used with MITF that of the aging component
(in all practical applications the condition t £ m is satisfied).

Another implication of the inequality is that the expomential distribution
predicts a shorter interval (O,texp) of guccessful operation at a given relia-
bility level than the true interval (O’ttrue) which would have been predicted

by the true distribution. The percent error (PE) 1s defined as

Cerue ~ Fe
PE = %P 100
exp

and it has been calculated for several distributions.37

If the underlying
distribution is the log-normal, this error is a function of the relliability
level and the ratio % where § 1s the standard deviation and m the mean for the
log-normal distribution. It is given by
.27 (2-1)
[l + (=) ] ===~ 4 InR (100
PE = - m’ 2

AnR

where R 1s the specified reliability and z is the solution of the equation

L[ 2
—— exp |- %— dx =R
var Tz

Fig. 2.21 shows the behavior of PE for R = 0,50 (median life).
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EXPONENTIAL PERCENT ERROR
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Figure 2.21. Percent Error vs the Log-normal Ratio
s/m for the exponential median life. (Ref 37)
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For the gamma distribution the percent error depends on the value of the

shape parameter r. It 1s estimated by

(-lz; + lnR)lOO
PE = - - TR
where
[0 o]
1 r-1 =-x -
T(r) [ X e dx = R

In Fig. 2.22 the percent error for the 90% reliable life (i.e, R = 0.90) is
shown. Observe that for r = 1 the percent error is zero as expected, since
the gamma distribution reduces to the exponential.

Finally, for the Weibull distribution PE depends on the shape parameter

o as follows

(-lnR)l/O‘
r(ly1
| [0

InR

+ 1InR|100

PE = -~

Fig. 2.23 shows PE for R = 0.90. Again, for o = 1 PE is zero, since the
Weibull reduces to the exponential,

A final word of cautlon is in order here; when one uses the exponential
model, it must be established that the stresses on the component are not much
different than those under which the failure rate used was derived. If there
is substantial difference the failure rate may be dramatically different and
adjustments should be made. These adjustments are accomplished with the use
of correction factors, which account for the different operational conditions
of the device. Discussions of proposed models can be found in the

references,6’7’8a27,32,42
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Figure 2.22. Percent Error vs Gamma Shape Parameter
at a Reliability Level of 90% (Ref. 37).

89




EXPONENTIAL PERCENT ERROR

90

80 - R

40 =

300

600 —

WEIBULL SHAPE PARAMETER

Figure 2.23. Percent Error vs Weibull Shape Parameter
at a Reliability Level of 30% (Ref. 37).
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2.B.5 Estimation of Parameters

In order to estimate the parameters of a distribution, which we believe
from physical considerations that it represents the population, there ‘are two
questions that should be answered first, namely:

a) how was the data obtained, and
b) what method will be used

The first question arises in life tests, where n units are placed into
operation and their times-to-failure are recorded. If all the units fail the
data is called complete, otherwise it is incomplete. Incomplete data results
if the test Is terminated (truncated) at a time to while some units are still
operating. Then the random variable is the number of failures r which have
occurred. The test may also be terminated when the rth failure occurs, in
which case the random variable is the time of the rth failure tr' These types
of data are called singly censored, Multiply censored data 1s obtained when
observations are lost, units are withdrawn from the sample during the test,
the units are put into operation at different times etc,

Finally, if the observetions and censorship are made on the « components
that were initially put into operation the test is called a nonreplacement
test, while if the failed or censored components are replaced by new ones the
test is termed as being one with replacement. Knowledge of these conditions
is necessary for the correct treatment of the data and the extraction of the
maximum possible amount of information from it,

The method to be used to estimate the parametgrs of the theoretical
distribution is a very involved subject; details on the principles and criteria
which are applied may be found in éection 2.A.5 of this report and in

references 6,7,8,12 and 25.
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Basically there are two methods of approach: 1) numbers are calculated
for the unknown parameters by a specified method and these numbers are assumed
to be the '"best'", in some sense, estimates of the parameters (poilnt estimation),
and 2) ranges of the unknown parameters are calculated and the probabilities
that the true values of the parameters lie in these ranges are given (confi-
dence intervals, interval estimation).

Point estimates are obtained either by the method of matching moments or
the maximum likelihood method. The last method 1s more flexible and 1s consid-

ered superior to the first. Forming the likelihood function
n
L(Eps Epreenntys By, Bpree0) = JTECE 6),000) (2.13)

we can estimate any parameter 61 by selecting that value which maximizes L or
log L, since 1t is easier to work with the logarithm, This expression of the
likelihood function is true for complete tests. For truncated or censored

tests it must be changed to include the additional information, Thus, if the

test is terminated at time to the likelihood function will be

L( t

r N-T
_ n! . _
gt el, 62,...em) = )T il=’lf(ti’ el,...,em) [l F(to)]
(2.36)

where F(t) is the cumulative distribution function of the assumed probability

tl,

density f(ti; 615++458 ). Thus the "best" estimate of 6, is the solution of
the equation

g%EE =0 (2.37)
i

This estimate 61 1s a random variable (different samples will, in general

yield different Gi's) and its variance is calculated from

A 1
var 6, = - (2.38)
1 3°1nL
2
361
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for large n. Having the mean and the variance of the estimate we can find
confidence intexrvals for Gi either using Tchebycheff's inequality or using

the fact that for large n the distribution of 61 tends to become normal. Of
course, if the exact distribution of the estimator 81 is known (see exponential
distribution below) we can find exact confidence intervals for samples of any
size and we do not need to resort to these approximate methods.,

Having point estimates and confidence intervals for the parameters of a
distribution F(t;@i) we can attempt to answer two very important questions,
namely:

a) Can we give confidence intervals for R(t; 61) = 1-F(t; 61)? If times-to-
failure are studied, this 1s equivalent to assigning confidence intervals to
the reliability of the units, e.g. What is a 100(1-0) percent lower confidence
limit on the probability that the units will survive a given interval of time
(0, t)?

b) Reversing the problem in (a) we can seek confidence intervals for the

time which corresponds to a given reliability, that is, can we make the state-
ment "the probability that the units survive past the time tY is at least
Y(pre-assigned reliability)" and be (1-0)100 percent confident about the truth-
fulness of this statement? The quantity tY satisfies the equation R(tY> =y

or F(tY) = 1-y and it is called the (1-y) fractile or quantile of F(t).

Maximum likelihood point estimates of these quantities can be found by
simply using the estimates for the parameters, Thus, for the extreme value
distribution F(t) = exp [~ exp(-0(t-B))] a point estimate for the reliability
corresponding to a given time t is ;(t) = l-exp [—exp(—&(t-g))]. The (1-y)

quantile is the solution of

—on(tY-B)

e © =1 -
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1 1
hence tY B = E-lﬁ <;n 1_r>

and a point estimate is

g = é - 1“-1n (?n —A;>
Y a 1~

The estimation of confidence intervals for R(t) and tY is more complicated.
If the distribution has only one parameter (e.g. the exponential), then the
confidence limits on the parameter can be used directly to find confidence
limits for R(t) and tY. However, when there are more than one estimated param-
eters this procedure is not applicable. Asymptotic results regarding the mean
and variance of any function G(Oi) of the parameters (like R(t; 6,) and tY(ei))
are given in Ref. 25; these can be used to find confidence intervals, as men-
tioned before. Since we will give the results for each distribution later we
do not present the method of Ref. 25.

1. The Exponential Distribution

Point estimates and confidence intervals for the MITF © (5 %) have been
found for all the types of tests. The results presented here are taken mainly
from Ref. 43,

~

In all the tests 6 1s estimated from

6 = (2.39)

=3

where T is the total operating time of censored, failed and unfalled components
and r 1s the number of failures observed. The following results arz obtained
with the method of maximum likelihood.

For Tests Terminated at the rth Failure: (r < n)

r
T = 2: ti + (n-r)tr (without replacement) (2.40)
i=1
T = nt_ (with replacement) (2.41)
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¥ k
T=zti+2’t
i=1

i + (n~rmk)tr (k censored units at times ¢ (2.42)
j=1

9
no replacement) y
(the expression for T can be modified along these lines to account for replace-
ment of censored or failed components).

Two-sided 100(l-a) percent confidence interval:

2T 2T
X2 <9< Xz o (2.43)
%, 2r 1% 2t
one-sided 100(1-0) percent confidence interval:
_Z_Z_T_ <0 (2.44)
Xa, 2x

where Xs,Zr is the upper o percentage point of the chi-square distribution
obtainable from tables (notice that X§,2r is the value which 1s exceeded with
probability o; this clarification is important, since some tables give as
X§,2r the value which is not exceeded with probability a).

Since the distribution has only one parameter it is straightforward to

find confidence intervals for the reliability and the quantiles. The point

estimates are ﬁ(t) = e_t/e and EY =0 log %u
Two-sided 100(1l-c) percent confidence intervals:
2
X t
202t ] X1-a/2,2r
exp \= 57 t/ < e < exp |- -——jﬁrJ—-— t (2.45)
1 1
2T log — 2T log =
—-2———1 <t < (2.46)
Xa/2, 2¢ X1-0/2,2¢

one-sided 100(1-0) percent confidence intervals:
2

X
exp |- —%%ZE t] < e-t/e , (2.47)
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2T log-i ‘
- < £y (2.48)
Xu,Zr

Example, Fifteen devices are put into operation and the test 1s terminated

when three fail. Thelr times to fallure are t, = 83 hr, t, = 95 hr and

1 2

t3 = 110 hr, Here n = 15 and r = 3 (no replacement). Therefore a point

estimate for the MITF is (using Egs. (2.39) and (2.40))

3
3 b, + (15-3)¢
~ {21 3 3 1608

0 = 3 = 3 = 536 hr.

The one-sided 95% confidence interval is (o = 0.05), Eq. (2.44),
—7555——— <8
X0.05, 6

From tables we find xg 05. 6 12.6, hence
o ?

2x1608 _
e>—1~2.—6‘——255h1‘

and we can state that we are 95 percent confident that the true MITF is at
least 255 hr (strictly speaking, we can only say.that if we repeat the test
many times then the estimate of 0 will exceed 255 hr in 95 percent of the
_ tests).

A poilnt estimate of the rellability at 100 hr is
E(lOO) = exp(~-100/536) = 0.83 and the one-sided 95% confidence interval is

R(100) > e—100/255 =

0.67
Put into words, there is a probability of at least 0,67 that a unit will
survive for 100 hr and this conclusion is true 95 percent of the time,

For the 0.10 quantile (y = 0.90) a point estimate is

—A ._1—=
t0.9 = 0 log 0.90 258 hr
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and the 957 lower confidence limit

= 123 hr

t > 255 x log 0190

which means that 100y = 90 percent of the units of a lot will survive for at

0.9

least 123 hr and this statement 1s true 95 percent of the time,

For Tests Terminated at Time to:

r

T = E: £, + (n--r)to (without replacement) (2.49)
1=1

T = nt_ (with replacement) (2.50)
r k

T = 2: ti-+ }: tj + (n-r=k) t (k censored units at tilmes tj, (2.51)

i=1 j=1 no replacement)

two-sided 100(1l-0) percent confidence intervals: (r < n)

._.2__21___ <8 < -—zﬂ-—-— (2.52)
X0/ 2, 2x+2 X1-0/2,2r
x2 x2
exp |- —gig—,l"—z-z—ﬂ t] < R(t) < exp |- —k%—,{rg'!—z—r' t (2,.53)
2T log — 2T losg 1
3 <t < 2__Y_ (2.54)

v
Xa/2,2c42 X1-0/2,2r

one~-sided 100(1-a) percent confidence Intervals:

2 1

2T log =
B b, e [ B cry, Ty (2.55)
X, 2142 X0, 2r+2

Example: Ten units are tested for 100 hr (no replacement) and no fallures are

observed. Then T = 10 x 100 = 1000 hr and a lower confidence interval can be

given at 957 confidence level. From tables we find xg 05.2 = 5.99 hence
° »

2 x 1000

£ 59 =334 hr < 6
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A point estimate of O cannot be given since no failures occurred (r=0). The

957 confidence intervals on rellabllity and the 0.1 fractile are

R(t) > exp (— 3%5)

1 _
and tY > 334 x log 99 = 161 hr

In some cases 1t may be impossible to find the total operating time T

(e.g. when the times of failure of the devices t, are mot known). Then we can

i
gtill give lower bounds to the reliability of the components usilng non-
parametric methods. These results are not restricted to the case where the
underlying distribution is the exponential, that 1s, they are distribution
free,

For truncated tests (i.e., observations are made for an interval (O,to)

and r failures are observed) a lower bound to reliability at a 100(1l-a) percent

confidence level is

Rp(ty) = . [FH (2.56)
n-rf ~0,2r+2,2n-2r
where F is the upper o percentage point of the F distribution with

0y 2r+2, 2n-2r

(2x+2) degrees of freedom in the numerator and (2n-2r) degrees of freedom in
the denominator.

If the underlying distribution is assumed to be exponential, the above
result leads to the following lower bound for the MITF

t

o .
<0 (2.57)
In |1 + r+l F

n=r| " q,2r+2,2n=2r

Example: Consider the previous example with 10 units in operation for 100 hr
with no failures. The non-parametric lower bound to the reliability at 957

confidence level is
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R, (100) = —— 1 - _§°49=o.74

L+ 95 %0.05,2,20 1t 710

Assuming an exponential distributlon the lower bound to the MTIF is

100 100 _
Tn 1.349 = 0.3 = 223 hr <0

which is very close to the bound found before (334 hr). This 1s expected,
since no fallures occurred, thus no information (failure times) was lost,

2. The Gamma Distribution

The method of maximum likelihood leads to a system of equations for the
bh, 45

parameters of the distribution, which is too cumbersome to solve and since
the distribution is not used much in reliability studies we do not present the
analysis here. Of course, when complete data are available a quick estimate

of the parameters can be made by the method of matching moments or by probabil-

ity plotting.

3. The Normal Distribution

For complete samples the mean and standard deviation are estimated from

the sample mean and unbiased standard deviation, i.e.

n
. &G
m o= = (2.58)
n 1/2 n . n 1/2
~ 2 2 2
z_:(ti—m) n ;ti - (X2
8’: }_:1___._.—_ = i=1 i=1 2 59)
n-1 n(n-1) (2.
two-sided 100(1-0) percent confidence interval:
A o n 5
m - t — < <m+ ¢t — .
or /" ot o (2.60)

where ta r is found from tables of the t-distribution for two=sided confidence

interval estimation and the degrees of freedom r is n-1.
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One-sided 100(1-0) percent confildence intervals can be found using similar

tables for tu and they are of the form

lower bound (2.61)

and m + ¢ upper bound (2.62)

Since the distribution has two parameters, the calculation of confildence
intervals for the reliability and the fractiles 1is not simple and tables must
be used.

The (1-Y) quantile satisfies the relation

t -m
t -=m X 2
N(—@I———)=ﬁj{ﬂ) 7 exp (-%-)cn=1-y
ks

or tY=m + y. 0 where yY is the standard normal variate, such that N(yY) = 1=y,

"
Confidence limits on yY at a (1-0)100 percent confidence level are given in
tables.zs’46 Given Y, o and the size of the sample n Table A.9 of Ref. 25

(or, Table 8.4 of Ref, 46) gives the one-sided lower confidence limit on

yY as - k. (Notice that in the tables Y and o are what we call here (1-0) and
(1-Y)). Then the corresponding limit on tY are m - k 8. Table 8.3 of Ref. 46
gives the two-sided confidence limits m - ka (the number k is called a toler-
ance factor). Notice that these limits are not the same with the ones given
beforé which utilize the t-distribution; the latter give confidence limits for

the mean only.

Confidence limits on the reliability of a given interval (0,t) are found
by reversing the above procedure. Now k = EEE and from the same tables the
g

value of Y is found given k, 0 and n. The following example will clarify the

procedure.
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Example: Ten units fail at times t., = 1500 hr, t, = 1550 hr, t3 = 1625 hr,

1
t4 = 1715 hr, t5 = 1750 hr, t6 = 1785 hr, t7 = 1800 hr, t8 = 1865 hr, t9 = 1900
hr and th = 1950 hr., Assuming a normal distribution we estimate
10

~ =1 1

W= g5 = 1744 hr.

G = 147 hr

Since ty 05.9 = 1,833 (one-sided) the 95% confidence interval for the

° 9 f

mean is

m > 1744 - 1,833 x 221 = 1659 hr

J1o

We now seek a one-sided 957% (0=0.05) confidence limit on the 0.1 fractile of
the distribution (y=0.9). From Table A.9 of Ref. 25 we find for o=0.05, y=0.09
(y=0.95 and 0=0.1 for the Tables) and n=10 that k=2.355 therefore

ty.g > m - kO = 1744 - 2,355 x 147 = 1398 hr

and we claim that in 95 percent of future tests the lifetime of 90 percent of
the units will be at least 1398 hr,

To find confidence intervals for the reliabdility in an interval of 2000
hr we calculate

2000 - 1744 _

k= 147

1.74

We wish to find the 957 confidence interval, thus the tables for k = 1.465 and
k = 2.355, Y = 0,95 and n = 10 yield o, = 0.25 and 0.10. Using simple interpola-—
tion (another method is described in Ref., 25) we find that

2,355 - 1,74

o =0,1+ 0,15 x 5.355 = 1.%465

112

0.2.

In our notation 1 -y = 0.2 = Y = 0.8 and we make the statement that with

confidence 95% the reliability over an interval of 2000 hr is at least 0.8.
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7,14

For truncated teasts the results become more complicated.'’ Assuming
that when the test 1s terminated at t, only r fallures have occurred we define

the degree of truncation as
h = n-r : (2.63)

and the quantity

r .
r E (t0=t1)2
1=1

= i 5 (2.64)
2 (t ~t,)
[i=l o 1 }
Then the parameters of the distrilbution are found from
T
0= ———F s5(h,2) : (2.65)
(for an unbiased estimate use r-l in the denominator) and
m =t + z(h,y)o (2.66)

The procedure is as follows: from the data and Eqs. (2.63) and (2.64) we
calculate h and y. Table X of Ref, 14 then gives z(h,y) and the quantity

V'(z) which is used to find g(h,z) from the equation

(2.67)

g(h,2z) = (n—r)wf(Z)—rz
Having g(h,z) and z(h,y) the parameters 6 and m can be calculated from Egs.
(2.65) and (2.66).

Confidence intervals for the mean can be found by utilizing the fact that
for large samples m is approximately normally distributed with variance

~2

g

= b @

where ull(z) is again found from Table X of Ref. 14 knowing z. Therefore, we

have two-sided 100(1-0) percent confidence interval
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/Az A2
~ (o] ~ o
m - kulz e ull(Z) <m<m+ kulz . ull(Z) (2.68)

where ka/2 is the number of standard deviations of a normal distribution such

that the value m + k
o/2

Simllarly the following one-sided confildence intervals are obtained

0 is exceeded with probability %w

~ A
m = ka E—-ull(z) <m (2.69)
,\ 52 ,
and m < m + ka = ull(z) | (2.70)

Confidence intervals for the reliability and the fractiles can be found as
before using the mean and the unbiased varilance and tables
Example: Suppose that the test mentioned before was terminated at t, = 1850

hr. Then only r = 7 failures are recorded. The degree of truncation is

and y is calculated to be

y = 0.72
From Table X, Ref, 14, we find z(0.330.72) = - 0.54, Y'(-0.54) = 1,156 and
ull(—0.54) = 1,141, hence, from Eq. (2.67),

7

8(0.3, -0.54) = 55T y5s ¥ 7x 0.55 ~ 0903
Therefore

0 = 121 hr,
and m = 1850 - 0,54 x 121 = 1785 hr

Also, since k = 1,64 (from tables of normal distribution), a lower

0.05

bound for the mean at a confidence level of 95% can be given

2
m > 1785 - 1.64\/1%1- x 1.141 = 1707 hr
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4, The Log=Normal Distribution

Since the logarithm of the random variable is normally distributed it
suf fices to take the logérithms of the observations and use the methods for
the estimation of parameters of a normal distribution.

5. The Weibull and Type I Extreme Value Distributions (Smallest Values).

The Weilbull distribution i1s to the Type I extreme value distribution of
minimum values as the log-normal distribution is to the normal distribution,

that is, if in the extreme value distribution

F(t) = 1 - exp G_ed(t—Bﬂ
we make the transformation t = 1In t' and B = In B' we get the Weibull distribu-

tion

vty o
F(E) = 1 - (' /BY)

Therefore methods for estimating the parameters of the one distribution can
also be applied to the other by a simple transformation.

The estimation of parameters leads to equations which cannot be solved
analytically and iteration or Monte Carlo techniques are employed. A review
and comparison of the various methods 1s given in Ref, 47. Estimation by the
method of maximum likelihood is presented in Ref. 45 and 48.

Similarly, confidence intervals on the reliability and the quantiles can~
not be found without the aid of the éomputer and usually tables are generated
for certain parameters which help in determining s“-.n intervals. Thus, in Ref.
49 tables are given for the estimation of an exact lower confidence bound on
the reliability (these tables can also be used for confidence intervals on the

fractiles47)

. In Ref. 50 confidence intervals on the parameters are estimated
and in Ref. 51 intervals for the reliability and quantiles are given; in both
references complete data are considered and the maximim likelihood method is

used.
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We present here a method for estimating the parameters with the use of

52,53 L. .

tables based on a method called best linear invariant estimation.
sample of n units 1s put into operation and the test is terminated when m units

fail (m £ n) the estimates for the parameters of the extreme value distribution

are

- m

B = iéiAi’m’“ £ (2.71)
and

m -1

a = EE& Ci,m,n £y (2.72)

where A and C can be found in the tables of Ref. 52 for n = 2,...,15
i,m,n i,m,n

and m = 2,...,n (for n > 15 see Ref, 52 and 49),
If the distribution is Weibull the above procedure is applicable of the
failure times and the parameter Eﬂ = exp(E}.

The (1-y) quantiles are

tY =B + é-ln 1n (%) (extreme value distribution) (2.73)
1 1/a
and tY = B'(ln §> (Weibull distribution) (2.74)

Point estimates are found using the point estimates of o and B(B'). A lower

bound on t_ at confidence level 100(1-0) percent is given by

Y
t 28 - % A (extreme value‘distribution) (2.75)
Y o. Y 1-o
and t' = exp g - %;(V ) (Weibull distriﬁution) (2.76)
Y [0} Y 1-0,

where (VY) is found from tables in Ref. 53 for vy = 0,90, 0.95 and 0.99.
1-a ‘

A lower bound to reliability is not readily available from these tables,
since values of V are listed for only three values of y. One calculates
E(E-t) and if this value 1s approximately equal to a tabulated value of V

(for the fixed m and n and the specified confidence level), then the
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corresponding Y is an approximate bound to the probability of survival past
the time t(extreme value distribution). Of course, other methods may be used
to find such a lower bound, like the one described in Ref. 49 or the non-
parametric result given in the discussion of the exponential distribution (for
tests terminated at a fixed time) or the asymptotic method described in Ref.
Ref., 25.

= 60, t, = 95,

1 2
= 160, The underlying distribution is assumed to

Example: Ten units are tested and five fail at times (hr) ¢

tg = 124, t4 = 140 and tg

be Weibull, To find the parameters we first calculate the natural logarithms

of the times to failure, 1ln £, = 4,1, 1ln ty = 4,55, In t, = 4.83, In t, = 4.94

3 4

and 1ln t5 = 5,07. Using the tables of Ref. 52 for n = 10 and m = 5 we find

(Eqs. (2.71) and (2.72))

B = - 0.1155 x 4.1 - 0.0908 x 4.55 - 0.0513 x 4.83 + 0.0009 x 4.94 +
+ 1.2568 x 5.07 = 5,259
and 0 = [— 0.1851 x 4,1 - 0.1818 x 4,55 - 0.1606 x 4,83 - 0.1253 x 4,94 +
+ 0.6529 x 5.07]"1 = 3,02
Therefore, the parameters of the Weibull distribution are & = 3,02 and
B = e5'259 = 192 hr.
For n = 10, m = 5, Y = 0.95 and 1-0 = 0,95 table 4 of Ref. 53 gives the
value (V0.95) = 8,39 and we calculate
0.95
ty g5 XP [5.259 - %fg%] = 12 hr.

which means that the minimum life, for which the reliability is 0,95, is 12 hr
with confidence 95 percent.

6. Type I Asymptotic Distribution of Maximum Values

The method of maximum likelihood will be used to estimate the parameters

0, and B. The results are taken from Ref, 54, 55 and 56,
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If n observatlons are avallable the estimates of 0 and B are the solutions

n
Of 1 ~ n ~ t
-at -at =t 1

Z:ti e T e ) +L. i‘i (2.77)
i=1 i=1 o4

n “A

z Clti

e
B=2n\— (2.78)
o

These equations are solved by some ilterative procedure in a computer
(notice that the first can be solved independently). As a first approximation
the estimates resulting from the method of moments may be used, that 1s, the
solutions of

> .

1

G e0m i b g (2.79)
o n
1
11
2 (t,-)
and 1'635 - 1=t = g2 (2.80)
5 n-1

1

An estimate of the return period is

ey = 2(E8) (2.81)
and in most applications 1t suffices to assume that the probability of T(t)
being in the interval 0,32 T(x) and 3.13 %(x) is %-(= 0.68).

The (1-y) quantile (i.e., the solution of exp [—exp(-d(tY-B))] = 1-y) is

- 1 L
tY =B - 5 1n (1n 1‘Y) (2.82)
and a point estimate ik
A A l 1
t = -=1 ey .
y=E-2n (1n 1—y) (2.83)
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Its variance is

2
1
R 1+ 1.645 [1—0.577 - 1n Klﬁ —‘—:_4)] }
Gi ={ ' — (a-y)/J (2.84)
Y a” n

For large n we assume a normal distribution and we can claim that there

is a probability (1l-y) that the largest observed value in any year will be

~

at most tY where tY lies in the interval EY * Ut and this will occur 68.2

Y

percent of the time (we could also consider the interval t ot 28t in which
Y

case the confildence rises to 95.4 percent). In a similar way we can define

one-sided bounds for tY; thus, there is a probability (1-y) that the largest

value in any year will be at most EY + 1.64 o, with confidence 95 percent
Y

The previous result may also be presented in another form: a point esti-

mate of ty = f + %-(y is called the reduced variate) is

t = é + ;_ (2.85)
y o
and its variance 1is
5% = |1+ 1.645 (1 21 /52
¢ = . -0.577 + y) (a” n) (2,86)

y

We now wish to predict the maximum observation in the next m samples
(years). We already know that if the distribution of the maximum in one year
is known then the distribution of the maximum in the next m years will be again
the asymptotic distribution of maximum values with parameters easily obtainable.
However, now we only know estimates of the paramete+s of the distribution of
maxima in one year and as a result the best we can do is find the mean and the

variance of the maximum in m years, Writing Tn for this maximum its mean is

Il

aT E[Tm] = E + QLQZZ:i_lEE (2.87)
m [0
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and its variance

0% = var[r ) = 1502 4 [1 " 1.645(1+1nm)2]//1&2n) (2.88)
m 0

Using Tchebycheff's inequality (Eq. (2.9)) we find that

i

2

T T k

Pinm - kO < T <m +ko]zl-
m T
m in m

and, as an example, the probability that the maximum observation in the next m

years lies in the interval‘ﬁT' £ 36_ is at least 0,889,
m m R
An approximate point estimate to the value B + ;-(c to be specified) which
o}
will be exceeded with probability vy in the next m years can also be given by

estimating
. - &
¢c == 1n (In =] + 1lom + 14+ 1.645[1-0,577 =
1~ 2n
1 2
- 1n (ln i:?) + 1lnm (2.89)

If a point estimate of the probability Yy is needed with given c¢ the reverse
proceduré is applied (i.e., the above equation is solved for Y).
Example: In Ref. 57 the flooding hazard for a nuclear reactor (Monticello site)
is studied. The floods for the years 1927-1970 (n = 44) have been recorded.
Then the maximum likelihood estimates of the parameters of the extreme value
distribution are found to be % = 15145 ft3/sec and &'1 = 6736 ft3/sec. Using
the method of matching moments the estimates are é = 15155 ft3/sec and
&_1 = 6712 ft3/sec.

Given these estimates we can make some probabilistic statements. The
return period of a flood of size t = 50000 ft3/sec. is, Eq. (2.81),

T(50000) = exp [-592‘22;——-5—1&] = 180 years

and there is a‘probability of 0.68 that this flood will occur in as short a

perior as 0.32 x 180 = 57.6 yr or as long a period as 3.13 x 180 = 564 yr.
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Reversing the procedure we can find the flood t with return period %(t) = 1000
yr by

£ = 6736 x 1n 1000 + 15145 = 61600 ft>/sec.
thus, every 1000 years we expect one flood of magnitude at least 61600 ft3/secu
To find the confidence limits we have

t'

]

6736 x 1n 320 + 15145 = 53900 ft3/sec.

and t" = 6736 x In 3130 + 15145 = 69300 ft>/sec
therefore, every 1000 years there 1s a probability 0.68 that the largest flood
which occurs is as low as 53900 ft3/sec or as large as 69300 ft3/sec.

We now ask the question: What is the maximum flood which has a frobability
0.90 of occurring in any year? From the quantile with 1l-y = 0.90 we get a point
estimate

3
Y 0.1 ;) = 30000 ft~/sec,

t = t. . = 15145 - 6736 x 1n (%n'alg-

For confidence limits we need the standard deviation

tO.l 0.90

1/2
A 1 \|? 3
G, ={1+1.645[1-0.577 = In{ln +=o~ x 6736 /V44 = 2560 £t /sec
hence there 1s a probability 0.90 that the flood in any year is at most
30000 + 1.64 x 2560 = 34200 ft3/sec. and this statement is correct 95 percent
of the time,

Finally, a prediction for a period of m = 40 yr. will be made. The

expected mean value of the floods over the forty years is

m_ = 15145 + (0,577 + 1n 40) x 6736 = 43900 £t3/sec.
m

and the standard deviation is found to be 10600 ft3/sec. Therefore, there is
a probability of at least 0.889 that a flood of size in the interval
43900 + 3 x 10600 or (12100, 75700) ft3/sec. will occur in the next 40 years.

A point estimate of the most probable flood in 40 years 1is @ + l%E = 39945

o
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ft3/sec. To find an estimate of the flood which will be exceeded with proba
probability 0.05 (y = 0,05) we caleculate ¢ = 7,055, thus this flood is
15145 + 7,055 x 6736 = 62700 £t /sec.

7. Superposition of Distributilons

Combinations of distributions lead to many problems where the parameters
must be estimated from test data. We present here a model involving two
exponential distributions and references are given for other models of interest.

Suppose that components are subject to chance failures from two indépen—
dent causes; then the compound.exponential model applies, that is

—(A1+A2)t

F(t) l1-e

1]

-(A1+A2)t

and f(t) (A1+A2)e
Failure times are collected from n operating units from which r have failed
when the test is terminated at ty (truncated test). A particular unit fails

due to either one of the causes and the cause of failure can be identified for

a failed unit; thus r, units have falled due to the first cause a2nd r, due to

1 2
the second. We define tij to be the time of failure of the jth unit due to the
th ,,_ - 1 tij . .
i™ (i=1, 2) cause., Writing £, = z ) the maximum likelihood estimates for
j=1 i
58

Al and AZ are

—_ — -1 ‘
r.t. +r,t, + (n~r)t ]
N 101 7 b o _
, Ai [ T , 1=1, 2, r, + r,

It
=

~ A

An estimate for the overall failure rate is, naturally, A = Al + AZ' The
varlances of the estimators are given in Ref. 58 and in Ref. 59 the problem
of estimation when the exact fallure times are not known but the data is col-

lected at certain times tj is considered.
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In Ref. 19 a method 1s described for the estimation of parameters of the
compound model of an exponential and a normal distribution.

Congider now the case of a mixture of two or more distributions, i.e.
f(e) = igl Py fi(t). The type of fi(t) is known and we wish to estimate its
parameters and the mixing parameters Py Ref erences 60, 61 and 62 deal with
the problem when the fi(t) are normal distributlions and Ref. 22 and 63 deal
with Weibull distributiéns.

2,B.6 Plotting Methods

Probabllity plotting is an easy and fast method of not only estimating the
parameters of a distribution from sample data but also of checking how well the
chosen distribution represents the observations. Detalled instructions as well
as theoretical justification of the method are given in Ref. 4. This approach
can be employed only for complete or singly censored samples.

A simple technique which may also be used in the case of multiply censored
data has been developed recently. Instead of plotting the cumulative frequencies
vs. the observations we plot the cumulative hazard function vs. the observations
(hazard plotting method). The cumulative hazard is defined as

t
H(t) = fh('r)d'r (2.90)

()
and 1s related to the distribution function through

H(t) = 1n[1-F(t)] (2.91)
The theory and applications of hazard plotting are presented in Ref. 64, 65

and 66,
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2,C. SIMPLE SYSTEMS

2.C.1, Introduction

The analysis of complex systems 1s very effectively performed with the
use of path (cut) sets, that is, the identification of groups of events which
together cause system succeas (failure). This procedure reduces a complex
gituation into a much simpler one, where events are interrelated in a manner
which permits the direct use of probabilistic methods to calculate the
probabillity of success (fallure) of the system,

The simple configurations which will be presented here are not only use-
ful in the analysis of complex systems. If a component is assigned the task
of performing a certain function, the probability of successful performance
(reliability) is improved with the use of more than one components which can
perform the same function (redundancy) .

In what follows we assume that the failures of the components are
independent and that the probability of the ith component being up is Py and
down 9y Knowing the pi's and the configuration we will calculate the
probability P that the system is functioning properly. In time-dependent
situations we will calculate the reliability of the system R{t) as a function
of component reliability Ri(t). Having the reliability we can calculate the
mean time to failure of the system m using the equation

m = fR(t)dt . : (2.92)

o
This equation 1s readily proved from the definition

(o]
m = f tf(t)dt R (£(t) = faillure density)
)

where the substitution
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is made and the integral is evaluated by parts.
Useful expressions for the MITF can also be given in terms of the Laplace

transforms of R(t) and f(t). Defining the Laplace transformation as

[os]

R(s) = %/P e SER(t) at (2.93)

o

it is immediately seen from Equation (2.92) and Equation (2.93) that
u = R(o) . | (2.94)
Furthermore, if

f(s) = LT[£(t)]

then
_-dF(S) -
5= = LT{t£(t) ]
thus
d%ts) _ ®
m -—d—s—' s=0 = ./o-tf(t)dt ° (2.95)

2,C.2. Series System

A group of N components are sald to be in serles if all the components
must functlon in order for the system to function (Filg. 2,24).

From the definition 1t follows that

N
P = Q Py (2.96)

and for identical elements (pl = Py ESENNN
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Figure 2.24. Series System.

115




The reliability of the system is

R(e) = fJ R (0) (2.97)

and when Ri(t) = @

N
-t L L.A
R(t) =e 11 (2.98)
thus the failure rate of the system is
N
A= 2 (2.99)
i=1
and its MITF
m = . (2.100)

1
N
Eéixi
The series system is the only one in which components with constant
failure rates induce a constant failure rate for the system. In all other
configurations the reliability of the system is not exponential.
Since the system functions if all its components function, its reliability
is smaller than the reliability of any of the components. Another way to

look at this is by defining T to be the time to failure of the ith component,

Then the system fails at a time t which is

t = min{Tl,...,TN]‘ . (2.101)

2.C.3. Parallel System

In a parallel (Fig. 2.25) .configuration N components are performing the
same function and any one component can successfully continue the operation
(i.e., N=1 failures are allowed).

Since the system fails if all its elements fail we have
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Figure 2.25, Parallel System.
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Q=1~P=nqi_ (2.102)
=1
or
P=1-= . (2,103)
For identical elements
“ N
P=1- (1l-p) . (2.104)
The reliability is
N
R(t) = 1 = l ; [1-R, (t)] (2.105)
i
i=1
and for exponential components
N »Ait
R(t) =1 = l i [1-e ]
i=1
and
N N-=1 N
m= 2 Xl - )» }\-]I: ot
i=1 "1 i=1 j=1i4+41 "1 7
N=-2 N=-1 N
+ Z 2 Z T—m———...'l'(—l)N—l Nl (2.106)
i=1 j=itl k=j+1 "1 j >\k E:A
=t
i=1
For identical elements
N
m= 3 — (2.107)
ni
n=1
As an example consider two units with failure rates Al and Az. The
reliability of the system is
-A t -A,t =At =At =(A,+A )t
R(t) =1-(1l-c¢ 1 ) (1-e 2 ) = e Vie 2 172
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and its mean time to failure

m=->i— +T§~T1i—g . (2.108)
If A EA, 22,

R(t) = 2N o 72t (2.109)
and

m=-§-\'>+-%7\-=§-% : (2.110)

Since the system fails when all its elements fail, the time-to-failure of

the system is related to the component failure times Ty by

t = max{Tl,...,TN} . (2.111)

2.C.4. r—out—=of-N System

A generaiization of the previous case is when N identical components
function in parallel and r are needed (instead of only one).
The probability that any k of N components are functioning is (binomial

distribution)

_N k.. Nk _ NI k., \N-k

Since the system is up 1f at least r components are functioning, the

probability of successful performance is
N

N
P = k}:Pk =2, (i\:)pk(l-—p)N—k .  a112)
=y k=r

For exponential components

u Ny kAt Nk
R(t) = 2 (k.)e (1-e ™) (2.113)
k=1 ' ‘
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and

N

- Y

m= 9, = - (2.114)
k=r

A common feature of the configurations studied above (series and parallel)
is that the expressions for reliability are derived by merely replacing Py
with Ri(t). The formulas for P may be interpreted as holding at every point
in time and the state of the system is determined by the present state of
its components. This is no longer true in the important case of a standby
system as it will be seen shortly; the whole history of the system from t=0

must be considered.

2.C.5. Standby System

In a standby (or, sequential) system one component is functioning and
when it fails it is replaced immediately by another component, which is not
subject to failure until it is switched on ("cold" standby). Figure 2.26
shows such a system with N=1 standby units. The switch is assumed to be
perfect.

Let Ti be the failure time of the ith component with failure density
fi(T). Since the components are operated sequentially (i.e., the first
operates until t=Tl, then the second from t=Tl tot = T1+T2 etc.), the system
fails at time T =i§lri' Clearly T is a random variable and its special
feature is that it is the sum of N independent random variables. The density

of T can be readily found with the use of the convolution theorem.

Convolution Theorem. Given two independent continuous random variables

Tl and T, with density functions fl(t) and fz(t) respectively, the density

2

function f(t) of their sum T = Tl+ T2 is the convolution of their densities

fl(t) and f2(2), i.e.,
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Figure 2.26, Standby System.

121




f(t) = fl(t) *£,(t) = / £,(x) £, (t=x)dx . (2.115)

X0

The proof may be found in any probability book.19293

In the case of positive random variables the integral is defined from O
to ©. The convolution theorem from Laplace Transform theory is now invoked,

i.e.,

T(s) = LT (£, () * £,(0) = F@F(s) . (2.116)

Thus, the LT of the convolution of two functions is simply the product
of their transforms.

Returning to the standby system we see that repeated application of the
convolution theorem yields the LT for the density function of the time-to-
failure of the system as the product of the LT of the failure densities of

the components, that is,
N

Tls) = n ) . (2.117)

i=1
Then the reliability of the system is

t

R(t) = 1 — ff(x)dx .

(o}

Let us apply the previous results in the case of N identical exponential

components, i.e.,

£,(8) = e ML i=1,2,...N .
Then T, (s) = —c d
en i S = S+>\ an
Be) = —2— . (2.118)
(s+A)
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Inverting the transform we get

W= e

f(t) = e (gamma density) (2.119)

and the reliability of the system is

N-1 .
R(t) = e~ 2 %‘!i)—— (2.120)
k=0

which is the well-known Poisson distribution. The MITF is readily found to

be (Equation (2.95))

__df(e)| _ N
e el IR . (2.121)
s=()

Another example involves two components with different failure rates Al

and A,. Then

2
AA
£(s) = (s+Al)%s+A )
1 2
and
A =A,t  =Ajt
£(r) = Al_i ¢ 2-e 1y .
172
The reliability is
-Azt —Alt
Ale - Aze
R(t) = Y (2.122)
1 2

and the MITF

m = 7l + 7l . (2.123)

1 2
For N dissimilar components the MITF is
N .
m= 0 L . : : (2.124)
k=1 *k
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An example which shows how the method presented above may be used in more
general cases, involves a series system with M identical exponential elements
for which there are N standby similar units. To find the reliability of the

system we must determine the fallure density of the series system first.

Since
~MAt
Rser(t) =€
the failure density is
drR_ (&)
ser -MAt
fser(t) === = Mle .

With N standby units the system is allowed to fail N times, therefore the LT

of its failure density is
N

~ ~ N | M\
£(s) = [£_ ()] —[S+M)\ ] (2.125)
hence
N N-1
= M)__t____ -Mit
f(e) = =) e (2.126)
and the reliabllity of the system is
N K
R(t) = e 33 ﬂ)‘—g—— (2.127)
k=0 ’

which is the Poisson distribution again with rate of occurrence of events

MA. The MITF is

n = ﬂfM% . (2.128)
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2.C.6. Dependent Failures

Al)l the previous models assumed independent failures, i.e., the failure
of any element was not influenced by the failures of the other elements.
There are cases, however, where such independence cannot be assumed.

In £he study of the standby system we assumed that the units on standby
were immune to failure. It is more realistic to assume that there is a
finite probability that these units may fail. Consider, for example, one
operating unit with failure density fl(t) and one standby unit with failure
density fs(t). When the standby element is put on-=line its failure density
changes to fz(t). The convolution theorem can no longer be used to calculate
the reliability of the system, because there is no indépendence of failures
any more. We could use joint probability densities to attack the

problem,l’2’3’8

however, the following method helps to a better understanding
of the sequence of events.

The system will perform its task in the interval (0,t) in either of the
two mutually exclusive ways:

(i) Unit 1 does not fail in (0,t), or

(ii) Unit 1 fails in (1,T+dT), where 0 < T < t, unit 2 does not fail

in (0,T) while on standby and it operates successfully from T to t.
The probability of the first case is simply the reliability of unit 1,

t
i.e., Rl(t) =] = ./nfl(x)dx. The probability of the second case is the
o

product of probability of the described events, i.e.,

t
£[fl(1)dT] * [R,(M] Ry (e-1)]
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where

Rs(T) =] = &;ﬂ fg(x)dx

Rz(t--’r) = ] - [ fz(x)dx

and we integrated over T to cover all possibilities of T in (0,t).

Therefore, the reliabllity of the system is

T

R(t) = Rl(t) + l fl(T)Rs('r)Rz(t—T)dT .

In the special case of exponential failure laws we have

—Alt
fl(t) = Xle
—Ast
fs(t) = Ase
—xzt
fz(t) = Aze
and
=A,t
_ 1
Rl(t) = g
—AST
RS(T) = e
-Az(t-T)
Rz(t—T) = e
therefore

- t . - -
Alt J/- Alf AST Az(t-m)

R(t) = e + Ale e e dt =
o
_ _ (A At
=e)\lt+ A [e)\zt_e 1 ]
Al+ AS- AZ
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If Al = Az = A (the units have the same on-line failure rates) the rellability

reduces to

_ _ =(AkA )t
R(t) e At + 'XA [e At - e 8 ]
8

or

=A t
R(t) = e M [1 +-%— (1L -e B )] . (2.131)

S

Observe that for As 0 the above expression reduces to

R(t) = e E(14nt) (2.132)

which is the known result for cold standby (L'Hospital's rule was used),

Equation (2.117). 1If AS = A the reliability becomes

R(t) = Ze—At _ e-ZAt

which is the result for a parallel system, Equation (2.109).

A generalization of the above result is presented in Ref. 67. There is
a total of MHN identical units of which M are required for successful system
performance and N are on standby. The failure rate of the on-line units is

A and of the off-line units is AS. Defining for convenience the quantities

_uA
s
-\t
B=1=-¢ s
and
R = e-At
u

the reliability of the system is given by the following two equivalent

expressions
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n+o=1 o
R = Z( >B“(1—B) (2.133)
n=D

n

N

=
[

N
( N ) g (1-g) ¥ N (2.134)

n=0

Notice that o is not in general an integer. However, the binomial coefficient

( ﬁ ) with x noninteger and r a positive integer may be defined asl

T r!

( x)= K(x=1) ¢ o o (x~1+1)

or, in terms of gamma functions,

(n+a—l) _ T(nta)

n T nil(o) *

The above distribution is called the Poisson~binomial distribution.
When As Z 0 it reduces to the Poilsson distribution (M elements in series and

N on "cold" standby), while when As = A it reduces to the binomial distribution

(M~out-of-M+N system).

2.C.7. Imperfect Switching

There are many complexities which may be introduced to make the previous
models more realistic. The methods presented though, are quite general and
powerful so that only slight modifications will be needed to account for any
additional features of the systems.

As an example, consider a standby system with one unit on-line (failure
rate Xl) and one on standby (on-line failure rate Az, cold standby). This
problem was solved in 2.C.5 under the assumption of perfect switching and the

reliability was found to be
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R _(t) = . (2,122)
pPs Al AZ
Suppose that there 1s a constant probability st that the switching will be
carried out properly. ILf the switch fails the reliability of the system is
just the reliability of the on-line unit, i.e.,

=t

_ 1
Rfs(t) = e °

Then in the presence of an imperfect switch the reliability of the system is

R(t) = (l—RSW) Rfs(t) + RSprs(t)
which yields
=A.t R _A -A,t At
R(t) =e © 4520t (e 2 -e 1) . (2.135)
1 2

(Observe that the second term in the sum is the increase of reliability due
to the standby unit.)

The same result could have been obtained with the method of 2.C.6. in a
straightforward manner, In Reference 67 this method is applied to determine
the reliability of a system consisting of M on=line elements (all required)
with N standby units. The failure rate of a unit on=line is A and on standby
is AS. ‘The probability of a successful switching is R, (constant). Further-
more, the standby units must be started when they are put on~line and the
probability of a successful starting of any unit is:RSt (initially the M
on-line units are switched on but they have not been started). Then the

reliability of the system is
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min(M,N) M N=k /nto=-1
R(E) = (k) Qf, k3 ( . )e“(l-s)‘”‘x
n=0 ,

=0 st st
N=k=n N
x X Nex
Zj{ ( )Qstsw Rstsw (2.136)
x=0 X
where
- A
o =M 3
s
8 = emAt
Qe = 1 = Ry
stew RStRBw
Qstsw =1- RStsw
M
and k)= 0 1if k>M .

Further examples and discussions of redundant systems may be found in

-References 6,7,8,9,
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2.0, MATNTENANCE MODELS

2.D.1. Introduction

The failure distributions and redundant systems which are studied in the
previous sections attempt to predict the probabilistic aspects of the per-
formance of a system that was built to satisfy a specified requirement. The
system is put into operation and the reliability function gives the probability
of successful operation for a given period of time,

In the present chapter we consider the problems which arise when the
system 1s subject to maintenance policies. These may simply consist of
replacement or repair of failed units (off-schedule maintenance) or of
regular inspection and repalr of redundant unilts according to a predetermined
plan (preventive maintenance).

The first subject to be treated is the off-schedule maintenance. New
mathematical tools are needed for the study of the problem and they are

presented in the following sections,

2.D.2. Renewal Theory

A detailed exposition of renewal theory can be found in Cox.68 The

fundamentals of the theory with applications to reliability engineering are
also presented in References 5,8,69 and 70.

A renewal process is defined to be a sequence of independent, non-
negative identically distributed random variables Tl’TZ’TB"°' « To visualize
a situation which conforms with this definition, assume that an item is
placed into operation in a socket. Its failure distribution (which is also
the distribution of inter—arrival times) is ®(t) and its failure density ¢(t).
The unit fails at a time t. =.T, and it is instantaneously replaced by an

1 1

identical unit, which fails after time T i.e, at time t = T.+ TZ’ and it

2? 2 "1
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is replaced etc. Then the sequence T., T forms a renewal process (see

1* 722°°°
Fig. 2.2_7)° It is important to notice that the time t i3 counted from the
beginning of the process, while the time Ti ig the time interval between the
(iml)th and ith replacement (inter-arrival time)., By definition

P(T, < t) = &(t)
and

P(t <T, <t+dt) = ¢(t)dt

i
(when all the inter—arrival times have tﬁe same distribution ®(t) the
process is called an ordinary renewal process; in some cases the first time
Tl has a distribution @l(t) which differs from the distribution &(t) of
Tz, T3,... . Then we talk about a modified renewal process).

Having ®(t) we will attempt to make statements about the following
quantities:

a) P(T1+T +...+Tn < t): probability that the time of the nth replace~

2
ment (renewal) is less than t.
b) N(t): the number of renewals in the interval (0,t)
c) W(t)ZE[N(t)]: the average number of renewals in the interval (0,t)
(renewal function), and
d) w(t)= EH%%l : renewal density with interpretation:
w(t)At = probability that a renewal occurs in the interval (t, t+At).
w(t) is a probability density, like ¢(t), but it stould not be confused with
the latter; ¢(t) concerns the failure of a specific unit which is placed in
the socket while w(t) refers to any failure (and thus a renewal) occurring
in the socket. Also the time scales are different; time in ¢(t) is counted

from the moment the unit is placed into the socket, while time in w(t) is

counted from the beginning of the remewal process.
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Figure 2.27. A Renewal Process.
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To calculate the probability that tn = :Z: Ti < t we invoke the con-
i=1
volution theorem (see Sec. 2.C.5). TFor a modified renewal process we define

the following sequence of convolution integrals:

[

oV (0 = o (0)

t

0P 1y = o oy ro(e) = f o™ (t-x) () dx
[8)

t
o™ () = ¢ Dug(e) = f oD e dx . (2.137)
o]

n
Then ¢(n)(t) is the density function of t = ji: Ti' By integrating over t
i=1 .

we generate a sequence of convolution integrals for the distribution function,

i.e.
oD ey = XE)
t
oty = oW (eyre(e) = f o1 (t=x) b(x) dx
° s}
. t
™y = o Dug(e) = f¢(“'l)(t—x)¢(x)dx (2.138)
(o]
Then
(n) _
(k) = P[T1+ T2+...+ Tn £ t] .

In the Laplace transform domain the expression for the density takes on a

simplé form; defining

(=]

g(s) = f e %t g(t)de

[o}

we use the convolution theorem for Laplace Transforms to get,

4~

5 (e) = F (o) () 1™! (2.139)
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Of course, for an ordinary renewal process we replace ¢l(t) with ¢(t) and the
results become simpler.

The distribution of the number of renewals N(t) is readily found from
the previous results. Since the event N(t) = n is identical with the event

t €t we have

tn n+1

A

PINCE) = n] = o™ (t) = oD () . (2.140)

This result enables us to derive an equation for the renewal function W(t).

By definition

o0}

w(e) = 2, nlot™ () - 6™ () =

n=0

z @(n) (t) =
n=1

L]

© t
<I>1(t) + Z f Q(I_]_l) (t=x) d(x)dx =
n=2 o

t o
= 0, (t) + J D 6™ (tox) () dx =
o n=1
t
= CPl(t) + fW(t—x)d)(x)dx
o

Therefore, we have the two equations

t
wit) = <I>1(t) + f Wit=x) ¢(x) dx (2.141)
A ‘
and, by differentiating,
t
w(t) = 5—“2 = $,(0) + f w(t=-x) b(x) dx (2.142)
(o]

which are of the same form (renewal equation). We can interpret the terms of

the equation as follows: w(t)At is the probability that a failure (and thus
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a renewal) occurs in the socket in the interval (t,t+At). This event can
occur in either of two mutually exclusive ways: a) the first unit that was
placed in the socket fails in (t,t+At), or b) a renewal took place at (t-x),
0 < x <t, and the unit that was placed in the socket than fails at (t,t+At).
These two events have probabilities equal to the first and second term of the
right side of the renewal equation respectively,

To solve the renewal equation we use Laplace transforms and get

31(5)
w(s) = ———— (2.,143)
1 - ¢(s)
and - ~
N 3, (s) 9, (9)
Wis) = —— = —=— . (2.144)

1 -3(s)  s[l-¢(s)]

The solution may be obtained in closed form only in special cases. In
the important case where the inter-arrival times are exponentially distributed,
i.e.,

6,(8) = 6(t) = A"

inversion of Equations (2.143) and (2.144) yields

w(t) A (2.145)

W(t) At (2.146)

which is expected, since the exponential model has nc "nemory". Furthermore,

the density function for t, is the convolution of n exponentials, thus

n
¢(n?(t) = z%:ITT tn—le-kt (gamma density)
and
n-=1
q)(n)(t) =] - e—)\t [l + At +.. .+ ——-%\_t_—)l)—!—— :l . (2.147)
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The probability of exactly n remewals in (0,t) is

n
PINCE) = n] = o™ (e) = oD ¢y = i%%l—i:e“lt

(Poisson distribution). (2.148)

Solutions in closed form can also be obtained for the more general gamma
distribution, i.e.,

r.

6(0) = 00) = Ry e r e 12,0,
A >0
In this case
r-1
+
_ _ op)"* =At
PIN(E) = nl = D 2D e (2.149)
i=0
Tl
K K
wu)m%+% 8 ku%““keﬁ (2.150)
=1 1-6
where 0 = exp(ZQED, 12= -1 .

In Reference 71 the renewal function is calculated in series form when
the inter-arrival times are Weibull distributed; This solution was used in
Reference 72 to derive graphs of the renewal density and function as functions
of time for special values of the parameters of the Weibull distribution.

The previous results give the quantities of interest as functions of

time. An asymptotic result is also of importance, namely

lim w(t) = 1im wee) o1 (2.151)

£ > o t > o m

where m is the mean of ®(t). This means that if the units are replaced as
they fail, then the probability of a failure occurring at any time (t,t+At)

tends to a constant which is equal to the reciprocal MITF of the unit (thus
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in the modified process, the distribution @l(t) does not affect the asymptotic

behavior)., The asymptotic value is reached after several MITF's.

Observe that when ¢l(t) Z P(t) = Xemkt we have

w(t) = A = for all t, (2.152)

Bl

that 1s, the asymptotic value is the exact solution. Of course, the hazard
function is also h(t) = A, This coincidence of numerical values has led to
some confusion in the past and the renewal density has been treated as a
renewal rate similar to the failure rate. This cannot be done, since the
concepts are completely different: hAt is a conditional probability while

wlAt is a probability density.

2.D.3. Repair of a Single Unit

Renewal theory can be used directly in the study of failure and repair
of components. Instead of replacements of units by new ones, we assume that
when the component fails it undergoes repair which restores it to an "as-
good-as-new'" status. As renewal points we consider the times at which the
unit enters the operating state either as new or after the completion. of a

repair. The inter-arrival times T,,T.,... are the sums of two independent

1’72
random variables: the time of operation of the unit (or, the time spent in

state 0) Tg and the time it takes for the repair to be completed assuming it

. , , . 1,
starts immediately after failure (or, the time sper* in state 1) T,, i.e.

7, =10 + 7l . (2.153)
1 1 1

If the failure density is f(t) and the repair density g(t) the convolution

theorem (Equation (2,115)) gives the density of inter-arrival times as
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t
p(t) = £(t) * g(t) = ‘I.f(t»x)g(x)dx (2,154)
(o

or, in the Laplace transform domain,
$(x) = £(s)g(s) : (2.155)

The renewal density wr(t) then satisfies the renewal equation (ordinary
renewal process, since at the beginning of the process the unit was new)

t
wr(t) = ¢o(t) + ‘I.wr(t—x)¢(x)dx (2.156)

(o]

and, in terms of Laplace Transforms,

¥ (s) = 6(s) - _E)E(s) . (2.157)
: 1-§ (s) 1-(s)g(s)
The expected number of repairs in (0,t) is then
t
Wr(t) = Jowr(x)dx (2.158)
with LT
W (s) = £(s)g(s) . (2.159)

s[1-F(s)E(s) ]

In a similar manner we can calculate the probability of a failure in
l(t,t+At) and the expected number of failures in (0,t). Now the renewal points
are defined to be the points in time where the units fail, The inter~arrival
times are again distributed according to ¢(t) but now the process is a modified
one; indeed, the unit starts as good as new and it fails at time Tl which is
distributed according tov¢l(t) = f(t) (the failure density of the unit). Thus,

the renewal density wf(t) satisfies the equation

t
wf(t) = f(t) + f wf(t—x)(b(x)dx 4 (2.160)

(o]
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hence

W.(s) = £(s) . (2.161)

1-£(s) g(s)

The average number of failures in (0,t) is

t
Wf(t) = J; wf(x)dx (2.162)
and its transform
We(s) = f(s) . (2.163)

s[1-£(s)(s) ]

Using the convolution form of ¢(t) we can write the renewal equation as
t

f(t) + fwf(x)(b(t-x)dx
o

]

wf(t)

t t=x

£f(t) + fdx wf(x) f g(t=x=T1) f(T)dT . (2.164)
(o] o]

The interpretation of this equation is as follows: a failure occurs in
(t,t+At) with probability wf(t)At which consists of the probabilities of two
mutually exclusive events: the event that the unit fails for the first time
in (t,t+At) and the event that the unit failed in (x,x+Ax), was repaired T
units of time later and it fails again in (t,t+At). These two probabilities
are the two terms on the right side of the equation.

The most important quantity in safety analysis s the availability p(t)
of the unit, which is defined as the probability that it is functioning at
time t, Its complement is called the unavailability of the unit and they are

related by

p(t) + q(t) =1 . (2.165)
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The initial condition is

p(0) =1 (and, as a result, q(0) = 0) . (2.166)

An integral equation can be written for p(t) as follows:

t
p(t) = 1 = F(t) + .f wr(x) [1=F(t=x) ]dx (2.167)

o

and the interpretation is as usualv(the first term on the right side is the
probability of no failure in (0,t) and the second term is the probability of
a repair at x and no failure from x to t).

Taking Laplace transforms we get

F(s) = —i=Es) . (2.168)
s[1-£(s)g(s) ] ‘

It is shown in Barlow and Proschan5 that the availability can also be

calculated from

p(t) =1~ [wf(t) - W .(8)] . (2.169)

Several asymptotic expressions find extensive use in applications. To
find them we use the final value theorem of Laplace transform theory which

states that

* =At
Note: If F(t) =1 - e and we multiply the equation by A the following
equation results

t
Ap(t) = Ae—At + .[ wr(x) Xe_A(t—x)dx .
o

It is easy to see that the right side is just the probability of a failure
in (t,t+At) (divided by At) which is wg. Therefore we have derived the
relation

we(t) = Ap(t) = Al1-q(t)] (2.170)

which is the same as Equation (12) in W. Vesely's paper, "A Time-Dependent
Methodology for Fault Tree Evaluation," Nucl. Eng. and Design 13 (1970) 337-360.
However, it holds only for constant failure rate and not in general; in addition,

A is a failure rate as conventionally defined and not as defined in the
mentioned paper).
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p, = lim p(t) = lim [sp(s)] . (2.171)
g > g >0

Furthermore, for small values of s, Equations (2.94) and (2.95) lead to

T(s) ~ 1 - ms (2.172)

and

8(s) ~ 1 - s (2.173)

where m is the mean of f(x) (called conventionally mean time between failures,

MIBF) and T is the mean time to repair, i.e.,

o0}

T = f t g(t)dt = MITR . (2.174)

(o]

The asymptotic availability is then

= 4 1l -~ (l—mS) L _m
Po = 1M [ T-(1-ms) (1-15)] = (2.175)

Similarly, the asymptotic failure and repalr renewal densities are

1
o= Vrw ™ - (2.176)

Applications

1. Exponential failure and exponential repair

=Ut

Here f(t) = Ae—kt and g(t) = ue and their Laplace transforms are

%ks) = A/s+) and g(s) = u/s+u . Simple calculations ,ield

S Y, S €5 V) 2 - (2.177)
p(t) ) + = e
Po = TR (2.178)
2
A A° —(Odt
w(t) "A_+E+ el (2.179)
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A A ~(Od) t
we(t) = Tho ?KEET e (2.180)

= = A
wfsoo Wr,w el (2.181)

The asymptotic results are reached after ~ 3/MU units of time.

2. Exponential fallure and fixed repailr time

£(£) = e ™ and  g(r) = §(t=T)

where T is the constant time it takes for a repalr to be completed, and §(t-T)
is the Dirac delta function.

The Laplace transforms are

%ks) = E%X and B(s) = e 8T
hence
~ 1
B(s) = — -
s+A=-Ae
= 1 =
e
0 n
o1 Ay et
= St é (s+>\)e (2.182)

The inverse transform is expressed in terms of the unit step function
U(t=nt) as follows

A2 (t=nT) " ~A(t=nT)

o U(t-nt) (2.183)

p(t) =
n=0

where

1 1if t > nt
U(t-n1) = . (2.184)

0 if t < nT
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The availability as a function of time is shown in Figure 2.28. 1In the

first two time-intervals the availability is

p,(t) = A 0<t<T (reliability)
py(e) = e 4 A=ty METD e < ar
etc,

The maximum value occurs in the second interval at

max A

and it is
AT)

_ e—(l—e
max

The asumptotic availability is

S
Pw = THiT (2.185)

and it is reached after ~ 3T .

The LT for the failure renewal density is

and inverting as before, or using Equation (2.170), we get
wf(t) = Ap(t) . (2.186)

For the repair renewal density we have

Xe—ST
sti-re ST

W (s)
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Figure 2.28. Availability as a Function of Time
{Exponential Failure Distribution E(t) = 1o
and Constant Repair Time 7).
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therefore

]

wr(t) Ap(t=T) sy E©>T

= T <0 . (2.187)

The asymptotic expressions are

A

wf’oo = Wr,oo = T . (2.188)
3. Exponential fajlure and gamma repair distribution
73,74

The description of repair by the gamma distribution i1s more realistic.

Here we assume that

g(t) 2p oTHE

]
=
[n3
©

thus

fl

B(s)
(st 2

To find the availability we have

(s+u) 2 ) (2.189)
S[s2+ (2uN)s + 2uh + 2]

P(s) =

The time-dependent availability may be found by inverting P(s); this leads to
expressions involving hyperbolic functions (with the condition that A > 4p;
if A < 4y trigonometric functions are used) which are quite complicated and

of little use, The asymptotic availability though 1s readily found to be

R ~ U
P, = lim s p(s) = =57 . (2.190)
s+ 0 w2
Furthermore
w =W = Au_ o (2.191)
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The time-dependent part of p(t) decays as en(U+A/2)t

asymptotic expressions can be used after“*E;%T§ units of time.,

4, Gamma failure and repair distributions

Now we have

£(t) = A2e e At and g(t) = poc e ME
thus

~ >\2 2

f(s) = 5 and g(s8) = -“Ji”jz .

(s+}) (s+1)
Then
2
~ + +
5(s) = (s+2}) (a+p) .

8 (s+Ak) [824+(Op) s+2A0]

The asymptotic availabllity is

Po = A
The fallure renewal density is given by

A% (stp) 2
& (s+Ap) [82+(bp) s+2 2]

W (s) =

and

_ A -
Vew T TOMy ¢ T Ve,

Since the fallure rate of the gamma density is

2

and lim A(t) = A

t +
it is clear that the relation (Equation (2.170))

wf(t) = A(t) p(t)
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does not hold here, as expected, since the failure distribution is not
exponential.

A quantity which can serve as a measure of the performance of the unit is
the downtime D(t) (References 5,75). It is defined as the total time the unit
agpends under repair in an interval (0,t). Similarly we can define the uptime
U(t), which is the total time the units spends in the operating state.

Therefore
D(t) + U(t) =t (2.197)

The distribution of D(t) is given by complicated expressions and can be

found in the references. However, the followlng asymptotic result is of

interest
D(t) - qt L
Hm P —m -2 < x| = N(x) = —=— f e 24, (2.198)
£ > o 2 21 Jo
oot
D
where
r
qQ, === (2.199)
| Po? 4 ulo?
OD = 3 (2.200)
(r+m)

and O% and Oi are the variances of the failure and repair distributions

respectively. In words, the above result states that for large t the downtime
is normally distributed with mean the asymptotic un~vailability times the
time interval and variance Oé . Notice that we only need to know.the mean and
the variance of the failure and repalr distributions.

Finally, another quantity which also can serve as a measure of unit per-

76,77

formance is the excess time, It is defined as the total time B(T) that

the unit 1s under repair corresponding to T operating units of time. Thus the
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difference between D(t) and B(T) is in the argument: ¢t is the real time while

T is the time spent in state 0 only. Clearly
t =1+ B(T) . ‘ (2.201)

The asymptotic behavior of B(T) is

B(t) - mBT
lim P | =i &y = N(x) (2.202)
£t > o 02
DT
where
. .
mB = = (2.203)
and
2 moi +r Cf
OD = m3 ° (2.204)

2.D.4, Multiple-State Systems. Markov Approach

The preceding analysis referred to a single unit which could only be in
two mutually exclusive states 0 (up) and 1 (down). For any failure and repair
distributions we estimated the availability and other quantities of interest
using renewal theory; this approach was poésible because the regeneration
points of the renewal process were readily identified.

Unfortunately this elegant method cannot be applied to more general situ-
ations, where the sysfem may be in more than two states (e.g. units in series,
parallel etc.). It is very difficult, if at all possible, to find the
regeneration points. The use of Markov and Semi-Markov models makes it possible
to obtain useful results in these cases.

The study begins with the identification of all the mutually exclusive
states of the system. To make the discussion more concrete we will use as an

example a system consisting of two units, We do not specify for the moment,
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how they are logically ipterconnected. In addition there is one repair
facility which restores a failed unit to an as-good-as-new status. The
possible states of the system are the following:

0: both units are up

1: unit 1 is down and under repair, unit 2 is up

2: unit 2 is down and under repair, unit 1 is up

3: both units aré down, unit 1 is under repair

4: both units are down, unit 2 is under repair .

These mutually exclusive states exhaust all possibilities. Observe that
1f two repair facilities were available, states 3 and 4 would be replaced by a
single state: both units down and under repair.

The probability that the system will be in state i at time t Is denoted
as Pi(t). To be able to write a system of equations relating these probabilities
we define the transition probabilities as follows: the probability that the
gystem will be in state j at t+At given that it is in state i at t is aijAt'
The rates a ; are defined as a; = - ?;; aij and (l-aii)At is the conditional
probability that if the system is in state i at time t it will remain in that
gtate in the next interval At. All the transition rates are assumed ihdependent

of time.

We can now write an equation for the change of Po(t) in At, i.e.,

Po(t+At) = Po(t)[l—(a01+ aoz)At] + Pl(t)alOAt + Ez(t)aZOAt + 0(24%)

0,1,2,.0.

The first term on the right side 1s the probability that the system will
remain in state O, the second and third terms are the probabilities that a
repair is completed in At on unit 1 or unit 2, These are the only terms which

are of first order in At, terms of higher order are included in O(At) (e.g.
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transition from 0 to 3 or 4 requires the simultaneous failure of both units in

At, the probability of which is of order (At)z)a

Dividing by At and letting At + 0 yields

dp _(t)

N = m(aOl+ a02) Po(t) A a0 Pl(t) + azon(t)

Similarly we derive the equations

dpP. (t)
1
dc T 31 Fot) — (ay tagy) Pi(e) +a, B (1)
dpP,(t)
di = a5y Bo(6) = (ayy + ay,) By(t) + ag, Po(t)
dP3(t)
at = 213 Pp(8) - agy Pa(t)
dPA(t)
at " 3, Bp(t) —ay, BCR)

(2.205)

Figure 2.29 shows graphically the states and the transition rates.

The system can be written in compact form by defining the row vector

B(t) = (B (1), B (1), Py(t), Pylt), B, (1))

and the matrix

,:(301+ 392 301 302 0
a9 “lagpt a0 313

A = 350 0 —(a20+ 324) 0
0 0 432 ~832

0 a.y 0 0
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24

841

(2.207)




Figure 2,29, States and Transition Rates for a System With
Two Dissimilar Units and One Repairman.
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then we have

dp (t)
dt

= P(t) A (2.208)

and if some initial conditions EﬂO) are specified the system admits a unique
solution,

The stochastic process P(t) has a very important feature, namely, it
suffices to know one value of P(t) at a certain time (e.g. P(0)) to determine
completely the future (and past) behavior of the process.- This is a direct
consequence of the assumed constancy 1in time of the transition matrix A. The
future depends only on the present and not on the history of the system (i.e.
there is no memory). It is clear that such a model can be applied if and
only if the failure and repair distributions are exponentlal, since this is the
only distribution with lack of memory. The process we described is called

1,3,70,81 The theory and its application

Markov and has been studied extensively,
to reliability problems 1s presented in References 5 and 8 and the book by
Sandler78 is devoted exclusively to the Markov approach of reliability problems.
The system of differential equations (2.208) describes the general two-
unit system with one repairman available. Knowledge of the logical intercon-
nection of the units permits us to calculate the elements of the transition

matrix A and to proceed to estimate various reliability quantities. Thus we

distinguish the following cases:

Series system

We assume that the failure rates of the units are Al and AZ and the repair
rate is p. A further assumption is that the units work independently and
failure of one does not affect the performance of the other. Such a case

arises, for instance, when two engines are connected in series and when one
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fails the other continues to work. The situation is different, however, if
two resistors are connected in series, then fallure of one interrupts the cur-
rent, therefore the other cannot fail., In this case states 3 and 4 are

impossible. Then it 1s easy to see that

817 %4 " M

39 = 313 = A

810 T 80 T 832 T 1 T H -

Since both units are required for the gystem to function, the only accept-

able state is state 0, Therefore, the availability of the system is
p(t) = Po(t) o

Parallel system

Now only one unit is needed for successful system performance, therefore

the availability is

p(t) = Po(t) + Pl(t) + Pz(t) .

Standby system

Unit 2 is initially on standby with zero failure rate and Az on=line
failure rate. In this case we must also re—examine the definition of the
states. We assume that if both units are up it is unit 1 that is always on
line (all the switchings are instantaneous). If this 1s not the cace, state 0
should be split into two other states: unit 1 on=-line, unit 2 on standby and
unit 2 on=line, unit 1 on standby. Except for this nothing essential changes.

We always assume that the standby unit cannot fail,
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Then the transition rates are

a,, = a,, = A

01 24 1
35y = 0
aj3 = A

810 T 80 T 3 T ¥ T W

The system is up if either or both units are up, therefore its availability is

decermined by

p(t) = Po(t) + Pl(t) + Pz(t) .

These three examples illustrate how the method is adjusted to cover the
special features of a particular problem. The logical interconnection of the
units which comprise the system determines the elements of the transition
matrix in terms of the failure and repair rates and which states are the
working states of the system so that the availability function can be calculated.

A drawback of the Markov model in applications is the large number of
states that even a simple system can have. A great reduction in the number of
states occurs, however, 1f all the units are identical. The two-unit system
with one repairman can be in one of the following three states:

O: both units up

1: one unit up and one under repair

2 one unit down and the other under repair .

(The number of states is reduced by two in this example, but the reduction is
must greater in more complex systems.)
The transition rate matrix A has the following form when the elements are

in series or parallel
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=2A 22 0
A= (TR @S 2T} A (2.209)
0 U ~H

with working state for the series system the state 0 and for the parallel
system states (0 and 1. The graph is shown in Figure 2,30,

For the standby system the transition rate matrix is

-2 A 0
A= 0 =) A (2.210)
0w -

and again the working states are 0 and 1.

Thus far the analysis concerned the estimation of the availability function.
In many cases it is desirable to have expressions for the reliability of the
system, its mean time to failure (MITF) and theAmean up (or down) time MUT. In
the case of a single unit with repair the reliability and MITFF were not affected
by the repair process, for redundant systems however they are improved. In
general the reliability is less than or equal to the availability.

In order to calculate the above quantities a further discussion of the
states of the system is necessary. A characteristic of the Markov model with
the previously defined transition rate matrix A was that the system could
visit and leave all the states or, in other words, in whatever state the system
was initially, it would visit all other states afrer a finite time, These
states are said to communicate. If a state cannot be left once it is eutered
it is called an absorbing state. The state i is absorbing if and only if
a;; = - 2:' aij = 0. In our example if there were no repair, states 3 and 4

j#i
would be identical (both units down) and absorbing. Furthermore the states
would not comfunicate anymore since it would be possible to go from 0 to 1 to

2 to 3 (or 4) but not back, i.e. states 0,1 and 2 cannot be re-entered once

left.
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Figure 2.30. States and Transition Rates for a System With Two Identical
Units in Series or Parallel and One Repairman.
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For each logical interconnection of the units we have identified the
working states and the failed states. Assuming that initially the system starts
in a working state its reliability at time t is the probability that none of
the failed states has been entered. This suggests that we change the failed
states into absorbing ones and then calculate the probability that the system
is in one of the working states, This probability is the system reliability,
since we are sure that the system cannot leave the failed states. For example,
consider the system of two identical units with one on standby. The unaccept=—

able state is 2, therefore the transition rate matrix is modified to be

-\ A 0
A = o= A (2.211)
0 0 0

and the system reliability is
R(t) = Po(t) + Pl(t) o

The MIFF is given by

(e o]

MIFF = fR(t) at

(e}

2.D.5. Solution of the Markov System

The solution of the system

de(t)
= P(t)A
dt - (2.212)
n
R(O) = ¢ 2oc =1
_ i=0 *

is discussed in many textbooks. A detailed exposition of the various methods
can be found in Reference 79. The solution can be obtained by taking Laplace

transforms, i.e.
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hence

P(s) = C(sI-A)~ , 8 F Wy pee el (2.213)

where I is the matrix with unities 1in the diagonal and all other elements zero.
The Laplace transform variable s must not be equal to any of the (possibly
multiple) eigenvalues wy of A for the inverse matrix to exist. The inverse is

of the form

(s1-0) "t = BGs) (2.214)
det (sI=A)
where det = determinant and B(s) is a matrix whose elements are polynomials in
s of degree at most (n). The inverse Laplace transform may be found by
any of the standard methods (e.g. using tables, partial fraction expansions,

etc.). Lf there are k distinct eigenvalues of A with multiplicities m,

k
(Emi = n+l) the inverse transform will be of the form
i=1

K mi-l .
by mcd O v, Eret

3T
i=1 §=0 i3 3¢

where Yij are constant matrices. Once the probability vector P(t) has been
obtained the availability function will be the sum of the components of P(t)
corresponding to the working states of the system. We can write an expression
for the availability by defining a (n+l)-dimensional vector V whose ith element is
unity or zero depending on whether the ith state is acceptable or not. Then

the availability is

n
p(t) = }E: Pi(t)'vi = <P(t), V>. (2.215)
i=0
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It is clear that the eigenvalues of A play an important role. Due to its
n
special structure ji.e., ay = - 2: aij and aij 2 0 the following proper-

J#i
4=0

ties of the eigenvalues can be proven:
i. Zero is always an eigenvalue and the corresponding eigenvector has
non-negative elements,
ii. All other eigenvalues have negative real parts.
From these properties it follows that a steady state solution to the
system always exists, If there are no absorbing states, the asymptotic solu-

tion is found from

TA=0

n
> s
1=0

(2.216)
and it is independent of the initial vector C.

The elements Hi of the vector Il can be expressed in terms of the determinants
of A using Cramer's rule. Define Di to be the determinant of the matrix

formed by striking out the ith row and the ith column of =A, then it is easily

seen that
Di
. 1
ni ~ . (2.217)

2 o,

i=0

If there are k transient and nt+l-k absorbing states we write A as

A A

A= (2.218)

where Al is a kXk matrix consisting of the transient states. We also split the

probability vector P(t) into two parts
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E(t) = (P ,

L ) (2.219)

P
=3

where

Et - (POSP]—"""’Pk_l)

]

( P )

Po= (BB oo enP)

The steady state solution for Et is Et = 0, that is, the system will enter the
absorbing states and will stay there regardless of the initial conditions.

We now turn our attention to the estimation of reliability and va?ious
mean times of interest (in addition to the listed references see also Reference
80). As indicated in the previous section all the failed states are converted

into absorbing ones and the working states are lumped in A,. (Equation (2.218))

1
The initial probability vector is also written as C = Qgt, Ea) where

€. = (CpsCysevesCy ;) and C = (Cy.00,C ). We assume that the system is in

one of the working states at time zero, i.e.

and, as a result, Ci =0, {1 = k, kt+l,...n. The original system is now written

as
b, (t)
e R4
@, (t)
e TR (04
(2.220)
20 = &
2,0 =0 .
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As before the solution is in the Laplace Transform plane

- -1
B (s) = C (sI-A)) (2.221)
5 -1

sg;(s) = S&(sImAl) A2 . (2.222)

Defining a k-dimensional vector wi whose elements are unitles we have for the

reliability

R(E) = B (t), W > (2.223)

which expresses the fact that the reliability 1s the sum of the probabilitiles
that the system is in any one of the working states. Since E;(s) is the LT of
the probability vector for the failed states, éﬁa(s) is its derivative, there-

fore the failure density of the system is

£(s) = <8P (), W .y 4 (2.224)

and using the fact that the row sums of A are zero, i.e. Alﬂk-l- A2‘£n+l—k = 0, we

derive the expression
. (2.225)

Of course, the reliability may also be found from
t
R(t) =1 ~ I f(r)de .
(!

The MITF can be determined from

8

MITF = R(t) dt

~ O

or, from (Equation (2.95)
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- .47 = Ayt
MITF = Slimo ( P f(s)) <C (-A)TT, wy > (2.226)

which leads to interpreting the elements of (=Al)hl, say mij’ as.the expected
time that the system spends in the jth state before absorption if it starts in
the ith state. The previous formula shows that these times are weighted by
the probabilities of starting in any of the working states and then they are

summed. The mean times mij can be determined in terms of determinants of —Al.

Thus we define Mi to be the determinant of the matrix resulting from striking

]

out the ith row and jth column of =--Al and we have

-y,

- i
mij det(—Al) . (2.227)

If state 0 is when all the units are up, we define the system MIFF (mean-time-
to-first-failure) as the average time the system will spend in the working

states before failure. In terms of the previous quantities
k=1

MLFF = . (2.228)

m .
j=0 %

The matrix formulation presented here is a useful description of the
Markov model, however it should not be implied that every Markov system must
be solved in this manner. Very often the system of equations is simple enough
(three or four equations) to allow direct solution without reducing it to matrix
form. The matrix approach will be particularly useful in handling systems with

many states.

Applications

We present here several applications involving identical units; this case

is important in practice and many such problems are treated in Sandler.78 The
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treatment of the problem as a birth-and-death process is presented in Barlow

and Proschan.5

Standby System

We solve the two-unit system completely to show an application of the
previous results. The states of the system are

0: both units up, one on-line, one on standby

1: one unit on-line, one under repair

2: both down and one under repair (i.e., there is only one repairman).

The matrix A is

0 -1 2 « states
¥
=A A 0 0
A= ) . (2.210)
b =) A 1
0 u - 2

We assume that initially both units are up, i.e.

c = (1,0,0) .

First we find (sI—A)-l:
-1
stA -\ 0
(I-8) T = { —u sty =\
0 =L s+
2 2 ¢!
s +s (22 ) +u (s+p) A A
- 1
= { (st (s+) (s+p) (s+A) A X Jot(sI=A)
12 (st 828 (2AH) +22

(2.229)

164




and

det (sI~A) = s(s—wl)(s~w2)

where
w; = (kW = VA
wy = =(3n) + VAn

0, w,, and W, are the eigenvalues of A4).
The Laplace transform of the probability vector is then, from Equations

(2,213) and (2.229),

o _ -1 _ , 2 2 2 1
B(s) = C(sI-A) ~ = (s"+ s(2Mn) + ", (st)A, A7) x det (sT-R)
The transform of the availability is
p(s) = Py(s) + P, (s)
but it is easier to work with the unavailability
~ }\2
q(S) =1 = P(S) = P3(S) = S(S—wl) (S_wz)
hence
w,t w,t
2 1 1 1 1 2
q(t) = A + e t——"—ce . (2.230)
wywy g (wy—w,) wz(wz—wl)
The steady-state unavailability is then
AZ
Y =5 3 = H3 (2.231)
AT+HAu+HU
hence
24
1:>00=——}‘——“—=IIl+H2 . (2.232)

A2+Au+u2
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To find the reliability of the system we convert the failed state 2 into

an absorbing state and we have, (Equation (2,218)),

- ]
Al A2 A A % 0
o 0 wo=Odw ] A
e e et e e e e
0 0 P 0
Again we determine the inverse matrix
-1
-1 s+A =A
(sL - A)) = =
U s+tAtu
s+A+u A
_ 1
U S+) det(sI—Al)
where
2 2
det(sI—Al) = s 4+ s(2Xxu) + A" = (s-sl)(s—sz)
and

—(2xt) +V uZ b <o

51 7 2
o= =x =Vl <o
2 2

Then the probability vector of the working states is given by Equation (2.221),

i.e.

1

n

B (s) = (1,0)(sI-A))"

1
det(sI—Al)

1

(s+At+u,A)

thus the transform of the reliability is

o _ s+2)HU
M) = Gy
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hence

R(t)

[

= o ‘ ‘ (2.233)

At A

The MIFF is calculated using Equation (2.228), i.e.

MTFF = 33{%—— (2.234)

which is this problem coincides with the MITF because the system was initially

in state 0. If it starts in state 1 (i.e. c= (0,1,0)) its MITF is

MITF =-Ei% )
A

Consider now a more general system with n identical units of which n-1 are
on standby and one repairman, The matrix A is (the number of each state indicates

the number of units which are down)

0 1 2 3 ... (n=1) (n) < states
; v
_A A 0 0 e e o e 0 0 . 0
u -(A+u) A 0 e oo 0 0 . l
A=t o Hoo=(d) A eee. O 0 2 (2.235)
0 0 0 0 weee W - n
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The asymptotic availability is

-1
n
p =1-T [Z (E-> ] . (2.236)
0 n A
i=0
For n=1 we get
p = M
© At

which is the result we have found for a single unit (Equation (2.178)). For
n=2 we find the expression for the two-unit system, Equation (2.232).

The MTFF is

i

=

=}

MLFF = (2.237)

u
G+D) (n—i ! (7\ ) .

>

If the number of repairmen 1s n the corresponding expressions are

n n—i -1
p®=1-[z %(—‘%) ] (2.238)

i=0
and
n-1 i
_ 1 (1+u/0)
MLFF = 5y rard I (2.239)

Simple expressions for the reliability function cannot be found and in a
particular problem the technique with the absorbing states may be employed. In
the present case of identical units (for which matrix A is tridiagonul) the
method has been systematized with the introduction of polynomials with special

properties.sz’5 However, the algebra is quite involved.

Parallel System

When the number of units is equal to the number of the repairmen the

avallability function can be found using the binomial distribution without
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solving the Markov model. This i< justified by the fact that each unit functions
and is repaired independent of the others. The steady=state availability and
unavailability for each unit are W/u+A and A/y+A respectively. Therefore, for

a system with n units where m are needed the steady-state availability is

n 1 ne=i
p A
(' ) (“'“ ) (Mu ) . (2.240)

1

Lf, however, the number of repairmen is less than the number of units, the
performance of each unit is not independent of the others., Assume, for example,
that only one repairman is available. The solution of the Markov system yields
the following simple expressions for the asymptotic probabilities of the
system beiné in the various states (the number of each state again indicates

how many units are down)

n K
N [kEO %—! (%) ] (2.241)

—
1]

=]
il

i il

1 (E) o (2.242)

Thus if at least m units are needed for successful operation the asymptotic

availability of the system will be

P, = Z Hi . (2.243)

2,D.6. Non-Markovian Systems

A basic assumption in Markov processes is the constancy of the transition
rates. In the framework of falilure and repair of equipments a Markov model
can be used only if the failure and repair distributions are exponential, since

this is the only distribution in which the past does not affect the future,
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that is, the resulting transition rates are independent of time. Therefore,
in the important cases in applications, where the equipments age or the repair
is not exponential, other methods of attacking the problem must be used. We
will focus our atteﬁtion upon the problem of exponential failure but arbitrary
repalr, which arises more often in practice.

The general problem can be treated as a Semi-Markov process, as we will
see later. There are situations, however, where it can be formulated as a
Markov process with the introduction of artificial ("dummy") states, so that
all the transitions among states occur at a constant rate. A typical example
useful in applications is when the failure is exponential and the repair is

described by the gamma distribution

Ut

G(t) 1-e Mt Ute

with density

g(t)

]
=
[m3
0]

But we know that the gamma density is the convolution of exponential densities

and in the present case

t

g(t) = (ue "*(ue™) .

This property suggests that the time-to-repair can be thought of as the sum of
two independent random variables each exponentially distributed with the same
hazard function |, Therefore the repalr process can be considered as performed
in two identical stages. If there is only one unit we define the following
gtates:

O: the unit is up

1: the unit is in the last stage of repair

2: the unit is in the first stage of repair.
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The system of equations in (see also Figure 2.31)

dPO
T T T Mgt My
dPl
5 = - uPl + uPZ (2.244)
_c.l_ri.z_ = >\P = P
dt 0 W
thus
0 1 2 + states
¢
=\ 0 A 0
A= U = 0 1 .
0 M - 2

This system along with some initial conditions can be solved as before. The

steady-state availability is

= =——E——
P =1, =7y - (2.245)

It is clear that the technique can also be used when the failure distribution
is gamma distributed and for redundant configurations,

More generally, if only the mean T and the variance 02 of the time-to-
repair is known, this method of exponential stages can be used to render the
system amenable to Markovian treatment (Reference 83 and, for an application
to reliability problems, Reference 84). The coefficient of variation is

defined as

g
v =T . (2.246)
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Figure 2.31. States and Transition Rates for One Unit With Exponentially
Distributed Failure and Gamma Distributed Repair.
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If v < 1 the repair process is modeled as a series of k successive identical
exponential stages (Figure 2,32) each with repair rate U. Then the repair

density is the gamma (Erlangian) density

g (t) ='E% L e L ' (2.247)

The parameters k and U are determined by equating the mean and the coefficient

of variation of g(t) to the true ones, i.e.

— |~
]
,_‘

(2.248)

(k is selected as the nearest integer'satisfying
this equation).

—AfQ

i
vk

If v > 1 the stages are connected in parallel. Assuming two stages for
simplicity, 1 and 2, the failed unit enters either stages 1 or 2 with prob-
abilities p and (1-p) respectively. The repair rates are 2pu for stage 1.

and 2(1-p) for stage 2 (always 0 < p £ 0,5). The repair density is then

g(t) = 20%pe 2Pt 4 5 (1-p)Zpe 2 (1-PI1E (2.249)

where 0 and ) are determined as before, i.e.

1_.
u
2
(1-2p) _g
\/1 + 25(1-0) - . (2.250)

Figure 2.33 shows the states and transition rates.
Besides the method of stages, another powerful method of handling non-

85,86

exponential fallure or repair is that of semi-Markov process. Pyke
studied in detail the semi-Markov model; presentations of the theory may also

be found in References 5 and 87, while interesting applications appear in

References 88,89,90 and 91.
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- Up-STATES. e

Figure 2.32. Model of a Repair Process as a Series Connection of K
Exponential Stages.
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Figure 2.33. Model of a Repair Process as a Parallel Connection of Two
Exponential Stages.
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A semi-Markov process (or Markov renewal process) is a mixing of renewal
theory and Markov processes. The system can be in any of a finite number of
states at time t. If it enters state 1 at time t, it will spend there a random
amount of time, say T, before visiting state j. Thus we define

Fij(t) = P[time spent in state 1 before visiting state j is
less than t]. (2.251)

Notice that in a Markov process this distribution is the exponentialj;
here it can be any distribution. When the system 1is in state i there is a
probability Pij that the next transition is to state j. The unconditional
probability that the next transition is to state j before time t has elapsed

is then

and the unconditional probability that an exit from state i will occur before

time t is

() . (2.253)

0 = 2

Q
1]

J

j#i

The mean time the system spends in state i is

- f Gag(enae = 2 o (2.254)
it

(t).

where uij is the mean of Fij
The states are classified (absorbing, etc.) as in the case of Markov
processes. Then equations for the time dependent probability of being in state

i and the probability of absorption before t can be written down. These

involve complicated convolution integrals which can be handled with Laplace
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Transforms, although numerical problems arise due to the complicated character

of the equations (see Reference 20 for an example). We will not present the

whole theory here, but only several simple asymptotic results which are very

useful in practice. These can be expressed in terms of the pij_and Hy alone.
Let P be the matrix with elements pij (the element pii is defined as

Pi; = 1 - z;lﬁj)' If all states communicate there exists a steady-state

probabilitijector I = (HO’H2’°"’Hn) where Hi is the asymptotic probability

that the system is in state i. To find Hi we define the determinants Di as

th

Di = determinant of the matrix I-P with the ith row and 1

column deleted.

Then it can be shown that

Dy uy
Hi B . (2,.255)
2. D;¥y
i
As an example we consider one unit operating and one identical unit on (cold)
standby. The failure of both units is exponential with failure rate A.
There is one repair facility and the repair time is fixed T. The states

of the system are

0: one unit is operating, the other is on standby
1: one unit is operating, the other is under repair
2: one unit is under repair, the other is down,

The conditional distribution functions Fij(t) and the transition prob=-

abilities must be specified. Clearly

since the system cannot go from state 0 to 2. The mean time spent in state 0

is then
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2
1
uo—;z;:ipoiuoinnx )

Once the system enters state 1 there are two possibilities, elther it
goes back to 0 if the repair is completed before the on=line unit fails, or it
visits state 2, if the failure occurs before the completion of repair (i.e.,
before time T has elapsed). Therefore P1o is the probability that the failure
of the on-line unit occurs after time T (measured from the moment the system

enters state 1), thus

The probability Py is then

_ =AT
Py = l-e .

To find the mean time spent in state 1 we use the unconditional probability

Ql(t), which is

if t <1

1]
—
I
0]

Ql(t)

= ( if t > 1T (since the failed unit is
repaired exactly after T)

therefore,
- =\t
= = Atg-l-e
My = J; [l—Ql(t)]dt = J; e " dt N .

Finally, we must find the corresponding quantities for state 2. Since the
only transition possible is to state 1 we have Py = 1. To determine uz is
not as simple thoﬁgh. When state 2 is entered one unit is under repair and
the other one has just failed. The time spent in state 2 is thus the time
remaining for the completion of repair on the unit which 1s already in the

repair facility.
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-Atl

The probability density that a unit fails in (tl, t, + dt) is le and

1
the probability that it fails before 7T is Pios than the probability density of

failure before T is

Ae 1 . Ae 1
P12 1T
The time remaining until repalr is completed is t2 =T = tl with density
~A(T=t,)
Ae 2
l_e—AT
therefore, the mean time spent in state 2 is
T
= Aﬁ:iz_ t extz dt
2 —AT 2 2
1—e o}
’r)\--l+e“>\T
(1-"")

To calculate the steady-state probabilities we need the determinants Di'

The matrix I-P is

1 =1 0
12 = | M 1 ~l4e™T
0 -1 1
therefore
o AT _ _ -AT
D0 = e s Dl =1, D2 =1=ce .

Obviously the availability of the system is
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P, = HO + Hl =] - H2

D)k,

l=-=
Eg%ni“i

1
=t . (2.256)

TMte

It is evident from the previous calculations how extremely complicated the

method is when more than two units are involved. Several general models are

listed in Barlow and Proschan (Reference 5) and in Reference 9 the two-unit

cold standby system wilth one repairman and general failure and repair distribu-

tions is analyzed. All these results are too complex to be reproduced here,
however, the following two expressions are particularly simple:

1. For a system with one unit operating, n=1 units on standby and n
repair facilities, where all the units are identical with failure rate A .and
all repair facilities identical with general repair distribution G(t) with

mean T, the asymptotic probability that the system is in state i is

i
I, = iﬁil—iii— (2.257)

Yy oo’
71
i=0 -
(the state number indicates how many units are down). Thus, for two units the

availability of the system is

Pp = Mg + 1y =1 -1,

2(1 + At)
2+ 201 + O 2

. (2.258)
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2, If n components are in serles and the MITF of the ith component 1s

m and its MTTR is T,, the availability of the system is (Reference 92)

n . =1
p, =1, = [1 + 2 ‘;g‘j;] . (2.259)
1=1 ™y |

The problem of determining the reliability of the various configuration
has also been studied. The review paper by Osaki (Reference 93) contains the
theory for two-unit systems and many references, More recent papers on the

subject are References 89,91 and 94.

2.D.7. Ynspection Intervals

The corrective actions discussed thus far belong to the class of off-
schedule maintenance procedures: when the system or parts of it fail they
are restored to the functioning state by some repair process,

As is often the case with redundant systems a failure can only be

detected when the system is inspected. The system may still operate, but it

is not as reliable any more and the probabllity for a total failure is enhanced.

By planning to inspect at certain time intervals we can increase the avail-

ability of the system.

In this section we consider the following model (more general models of

g

preventive maintenance will be presented later):
a, The system has a failure distribution F(t).

b. It is inspected every T, units of time.

i

c. Failures are detected only when the system is inspected. The prob-
ability of uncovering a failure at inspection is unity.

d. At each inspection the system is renewed either by repair or replace-
ment of the falled parts.

We assume that the time it takes to inspect and repailr or renew the system is

on the average T, and that failure cannot occur during inspection,
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Our objective is to estimate the availability of the system under this
policy and to select the "best" Ty and/or T_ according to some criterion. This
model 18 widely wsed in engineering applications and various aspects of 1t are
digcussed in References 9,95,96,97 and 98,

Since the model is periodic it suffices to examine one period from 0 to
TR (Figure 2.34).. In the interval LT the system is inoperable for
a time T, plus the time interval between its failure and inspection. If it fails
at £t (0 £ ¢ % Ti) this last interval is Y = T, - t. The average time the system

i

is down due to failure is then

I1
Efy] = f (Ti-t)dF(t)
(e}

T

i
= f F(t)dt . (2,260)

(e}

Therefore the average system availability is

Tt E[Y]

+
Ti Tr

1l =

T
[

Ty
j; R(t)dt
= Jo - (2.261)

Ti + Tr

]

where R(t) 1 - F(t) is the system reliability.
If T, is fixed and we wish to calculate the optimnm Tys SO that p is

maximum, we set the derivative of p with respect to Ty equal to zero, that is,

dp

dt

T
i
i= (Ti + Tr) R(Ti) - J; R(t)dt = 0 ., (2.262)

A simple example involves a systeﬁ consisting of one component with

exponential failure distribution. Then
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Figure 2.34, Availability of a System Under Inspection and Repair.
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=AT

- 1l--e h (2.263)
P X+ 1) :
1 r

and the optimum T is the solution of

AT,
1

e =1+ A(Ti + Tr) o : (2.264)

If we assume that

)\(Ti + Tr) <<1 (2.265)

the availability reduces to

T, A T?
p = 1 1
+
T + T Z(Ti Tr)
ATi
>] - 5 , 1if Tr << Ti (2.266)

and the optimum inspection interval is determined from
(r)”

i
1+ AIi +

5 =1 + A(Ti + Tr)

which yields

. r
T, = 3 . (2.267)

For systems consisting of two or more components the failure distribution
is determined by the individual distributions and the logiral interconnection
of the units. Furthermore, the test can be conducted in either of two ways:
if simultaneous testing is used all the components are checked at the same time,
while in staggered tests the components are tested in different times and, as a
result, at any instant of time the units have been in operation for different

times. The type of testing employed also affects the system availability.
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In redundant systems it would be meaningless to test all components at the
same time, thus rendering the system inoperable. In the case of simultaneous
testing the units are actually checked consecutively, so that the system can
perform its task at all times. In order to see the effect of testing on a
redundant system we analyse the case of two units in parallel under simultaneous
testing, The test is performed every Ti units of time and the checking and
repair time for each unit is T, (the units are identical with failure rate A).
Then the period is T, + 2Tr. To estimate the unavailability q of the éystem

it is convenient to write
q = ql + q2 (2.268)

where 9, is the average unavailability during the interval Ti due to undetected
failures of the system, and 4 is the average unavailability during the interval
2Tr due to failures of the system while one component is under testing.

Again we assume that

A(ri + 2rr) << 1 (2.269)
so that for each component the failure distribution is approximated by

F =1-c¢e = At . (2.270)
During T the failure distribution of the system is (one—out-of-two system)

F,(t) = ()’ (2.271)

therefore

1 & 2
9 = T ¥zt 5 (Ae)"de
1 r (o)

3
oy
3A(Ti+21r)

(2.272)
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Usually T >> 2Tr vhence
(rp?
Q@ =—"3 - (2.273)
During 2Tr the failure distribution of the system is
Fz(t) = At . Ty <t < Ty + T,
= >\[t-=('ri + Tr)], T + TSt <T + ZTr (2.274)

since at T + Tr the operating component starts as good as new, therefore,

TifT T,+2T

1 r 1 r

q, = IR At dt + J. A[t»(ri+rr)]dt (2.275)
i r Ti Ti'l'Tr

which, under the assumption Ti >> 2Tr, simplifies to

q, = ATr . (2.276)

Therefore, the average unavailability of the one-out-of-two system under

simultaneous testing is
Q=49 + a4,

(ATi)z
= —5 + XTr 2.277)

under the assumptions

Tr << Ti the average time to inspect and repalr is much shorter

than the inspection interval,

and

1 , \ .
Ti+2Tr <<.K : the mean time to failure for each component is

much longer than the testing period.
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We now proceed to estimate the unavailability in the case when the checking
of each component is staggered over the interval Tge Figure 2,35 shows the
new situation: each unit is on-=line for Ty units of time. The only difference
is that if one unit starts operating at t=0 the other starts at t = kTi + Tr,

where 0 S k €1, In a period (0, T

{ + Tr) the following situations arise:

(O,kTi): one unit has been on line for a time t and the other for

a time t + (1~Y-=-)Ti

(kri, kTi+Tr): one unit is operating with age t, the other is down

(kri+Tr, Ti): one unit is operating with age t and the other with

age tn(kTi+Tr)

(Ti, Ti+Tr): only one unit of age t=(kTi+Tr) is operating.

The unavailability is then

kT, |
L leZ[u)]d Lii
q = t[e+(1-Kk) T, 1dt + t dt +
(Ti+Tr) A i T,
T, T,+T
1 2 1 r
+ 1' A [t—(kTi+T )]t dt + J. Alt=CkT, +1 ) ]dt]. (2.278)
in+Tr r Ti Lor

Performing the integrations and assuming that Tr << T; we get

Oy’ O’
q = —3 + }\Tr - k(1-k)

which attains its minimum for k = 1/2 (symmetrical or uniformly staggered test),

thus

- 2 2
q =37 (ATi) + ATr . _ (2.279)
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SECOND UNIT

FIRST UNIT

A

(K + 1)Ti+ 27‘r

Figure 2.35.

g {

" |

: I |

. N

| | v

| I oo

| | | | J|//

! ] | |

Kry+ 7 T (Ti + K+ )7+ 7

Staggered Testing of a one-out-of-two System.

The first unit starts new at t = 0 and is working until 7;
(continuous line) and then it is tested for 7, units of time
(broken line). The sacond unit starts at K7;+ 7, and works
for 7 units of time and then is put under testing for 7, units

of time, etc.
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This expression may again be considered as the sum of two unavailabilities

4 and q, as defined before, with

5 2
9 = 54 (ATi)

and

q, ATr .

Notice that 94 is greater for a uniformly staggered test than for a
simultaneous test, This is true for any configuration,

These formulas can be generalized to other more complex situations. For,
instance, under the same assumptions as before and for a parallel system with

n units (one required) the unavailabilities are:

()" N
q = _;;%;— + A" ! T; 2 L simultaneous test (2.280)
al3) )™ (D) 1) e
q = — + —5 » perfectly staggered test
4n (nt+l) n

(each unit tested every Ti/n, n £5)
(2.281)

For some common configurations Table 2.1 gives the unavailability due to
failures (i.e., ql) for simultaneous and symmetrically staggered testing
(Reference 99).

This discussion was confined to estimating the effects of testing and
renewal on the availability of the system. The results then may be used to
estimate T and T, 80 that a specific reliability goal can be achieved.

Assume that the unavailability of the system should not be greater than
q. Then for a nonredundant system the time interval between tests is found

from Equation (2.266), i.e.
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TABLE 2.1 UNAVAILABILITY AS A FUNCTION OF LOGIC

CONFIGURATION AND TESTING SCHEDULE.

(Ref. IEEE STD 352-1972)

LOGIC m/n SIMULTANEOUS PERFECTLY STAGGERED
TESTING TESTING
1/2 /3 ()’ (5/24) (t))”
2/2 kti ATi
1/3 (1/4) (xri)3 (1/12) (xri)3
2 2
2/3 (kri) (2/3) (kTi)
3/3 (3/2) () (3/2) Ot
1/4 (1/5) Ovr))h (251/7680) (Ari)“
2/4 ()3 (3/8) (At )3
3/4 2 ()2 (11/8) (“1)2
(1/2) x 2 2/3 ()2 (5/12) (rp)?
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hence

- 29 ‘
T X o (2,282)

For redundant systems we must have
q=ql+q2'

Hirsh (Reference 97) used the criterion that during testing and repair the
unavailability of the system should be equal to its unavailability during

normal operation, i.e.

4 =4, (2.283)
whence
=49 =9
a4y 5 and q2 ) . (2.284)

These two relations allow one to calculate both the testing interval Ty and
the allowable repair time T, The expression for q; can be found in Table 2.1
or must be calculated., Similarly cPY must be calculated. Several common cases

are given below:

one-out—-of-n system:

simultaneous testing:

n
n+l 2 i A 9

(2.285)
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Uniformly staggered test (n £ 5)

n!(n+3)(XTi)n

_ 4
o™ (n+1) 2

n-=2
(n—l)!(ATi) XTr

n-2
n

two—-out—-of=three system:

simultaneous testing:
2._4

=3
3>\Tr >

uniformly staggered test:

) 2
3 (XTi) =

oo

=9
3>\‘rr >

two-out—of-four system;

simultaneous testing:

n
T = % [2 g nn(n+l)
n!(nt3)

n=1

T = =2 <

S Tet S i

—
P

It
>
=

= -4

Tr 6
=11\/3q

1%V,
= -3

Ty 6A
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uniformly staggered test:

3
-2 /8
T 6

(2.290)
T el 3
\[8§ 6[8§
[ll . 3 A yl]
one~out-of-two twice system
simultaneous testing:
~1\/3
5% Ve
(2.291)
= -3
Tr © 7
uniformly staggered test:
- . 14/6q
i A VS
(2.292)
= -9
Ty 4x

Also in Reference 97 nomographs are presented for graphical estimation of Ti

and Tr in these cases.

2.D.8., Maintenance Policies

The model analyzed in the preceding section is only one of the many
different maintenance policies that can be employed.. Presentation of other
general models can be found in References 5,69,95,160 and 101. Here we
discuss several generalizations which illustrate the various approaches to
maintenance.

A general model which allows for imperfect checking, distinction between

checking time and repair time and failure during checkout is as follows:102
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a, The system fails according to the exponential distribution F(t)=l—emxt.

b. Inspection is performed every Ti units of time.

c. Inspection takes Tc units of time.

d. The probability that a failure will be detected is 6,

e. The probability of a false alarm (i.e., calling a good system bad) is a.

f. Inspection introduces stresses on the system and the probability that
the system will fail during the checkout period is B.

g. The probability that the fallure, which occurs during the checkout

period, occurs before the actual testing is Y.

h. If a failure is detected, the duration of repair is on the average T.

Under these assumptlons the availability of the system is found to be

=AT,
° .(.1—e 1‘) ,

P= —Mi —Mi
Mrr) j1+ e [B(1-otory=y0) — (1—6)]‘+ BAT [1—(1-8)(1-a)e ]

(2.293)

If the system cannot fail during checkout (B=0) and if no false alarm is

possible (0Z0), then the availability is

=AT,
© (l—e 1)

p = , —XTi _ij . (2.294)
AMT.4AT ) 1 - e (1-8) { +8AT _|1-e
i ¢ r
If in addition the detection of failure is perfect (0=1) we have
—Ari
l-e (2.295)

P = —Ari *
AT, + 1 + T 1-e
1 [ Tr

This equation is similar to Equation (2.263). In the latter the checkout time
and the repair time are lumped in the constant T, while in Equation (2.295)

these two times are separated and the time required for repair is multiplied
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by the probability of the system being down at the end of Tys since only then \
is repair undertaken.

As a last maintenance policy we discuss that of marginal testing. A com-
ponent can now be in more than two (up-down) states which are divided into
three groups: A (good), B (marginal, the component still operates satisfactorily
but it is expected to fail soon) and C (bad, the component is failed). When the
component reaches C its failure is detected immediately and 1t is replaced in
negligible time. Furthermore, at regular time intervals a test is performed
to determine whether the component is in A or B (it cannot be in C, since
failure is detected immediately). If it is found to be in A it passes the test,
while if it is in B it fails the test and it is replaced in negligible time,
thus starting operation in state A, This model is discussed (along with other
maintenance policies) in Reference 101 using the theory of semi-Markov processes
and in Reference 103 it is analyzed in detall under the assumption that thé
process is Markovian. In this case the transition rates Aij during normal

operation are assumed to be known. Assuming that the component is initially

good (i.e. in state 0) and that the test is performed in intervals of T
unlts of time integral equations for the following quantities are derived:
1. the expected number of failures in [0,t]
2. the expected number of preventive removals in [0,t]
3. the reliability function R(t;x), i.e. the probability of no failure

in an interval of duration t following component age x.

These equations are too complex to be reproduced here.
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3. SAFETY ANALYSIS OF COMPLEX SYSTEMS
3.A. LOGIC DIAGRAMS

3.A.1 Introduction

In this chapter we study the methods which can be used for a quantitative
safety analysils of multicomponent systems. There are various reasons as to
why the approach of statistical distributions falls in this case. The fore-
most of these 1s that each such system 1s unique ?n the sense that there are
no other identical systems (same components interconnected in the same“way
and operating under the same conditions) for which fallure data have been
collected, in order to make a statistical analysis possible. Furthermore, it
is not only the probabillistic aspects of fallure of the system which are of
interest but also the initiating causes and the combination of events which
can lead to a particular failure.

It is already apparent that the methods we will develop will be event ¢
oriented, that is, they will not be limited to analyzing a system failure in
terms of component failure alone, but they will also include other events, such
as human errors, which may influence the performance of the system.

The natural way to attack a problem of this nature, where many events
interact to produce other events, i1s to relate these events using simple
logical relationships (intersection, union etc) and methodically to build a
logical structure which represents the system. In fagt, this is the underly-
ing principle in all the methods, which deal with complex systems. An indis-
pensable tool of the analysis is the logic diagram, which depicts the events
and their logical relationships. We have already encountered the simplest
form of a logic diagram when we examined series and pearallel systems in Chap-
ter 2. The logic diagram is different from the system diagram, which simply
shows the physical connection of the components of the system, although it will

be recognized that the former draws much information from the latter.
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The various methods can be classified as qualitative and quantitative or
as inductive and deductive. Usually it is the combination of these approaches
which leads to a successful safety analysils. A method 1s qualitative 1f its
main goal is to discover how a particular event can occur or to what conse-
quences it leads. A quantitative method, on the other hand, attempts to
describe probabilistically the phenomena and clearly it must be preceded by a
qualitative method.

A more important distinction is that between inductive and deductive
methods. An inductive method starts from a particular event and proceeds to
uncover its consequences, while a deductive method proceeds backwards to
identify the causes of the event. Both approaches may give qualitative and
quantitative results,

These introductory remarks already show how important the tools of
mathematical logic are in the study of complex systems. An elementary intro-
duction to the subject is presented in the next section.

3.A.2 Logic

A fundamental notion in logic is that of a proposition or statement. It
is best introduced by examples, like "valve fails closed', 'the power is off"
etc. It is the meaning of such sentences which is called a proposition, with-
out regard to the actual words used or to any subjective meaning the sentence
may have for the speaker or listener (this definition and much of what follows
may be found in Ref. 104)., The propositions that interest us are the ones that
are either true or false, Then we may assign an indicator or truth value to
each proposition.  The indicator is (arbitrarily) set equal to 0 if the propo-
sition 1s false and equal to 1 if the proposition is true. The most common
proposition in safety studies is "component i is failed", which implies that

the component can be in either of two states, good or bad, If the component
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can be in more than two states (e.g., a valve may be good, fall open or fail
closed) nothing changes, except that for each mode of failure there will be a
proposition which can be true or false, and these propositions will be included
separately in the study. Thus, for the valve the two propositions are ''the
valve fails closed" and "the valve fails open". Notice however that in any
one of these is false, it doesnot necessarily mean that the valve is good,
since it may have failed according to the other mode of fallure.

From given propositions we can derive new ones by applying simple opera-
tions. There are three fundamental operations, the union, the product and the
complement, Their graphical representation (logic gates) 1s shown in Fig. 3.1

The union of n propositions A A2...An is a new proposition B formed as

l’

B = Al or A2 Of ..., OF An meaning that B is true if any one of the Ai is true
(including the possibility that more than one Ai may be true). Alternatively,
B is false if all the Ai are false., Symbolically we write B = Al VA2 V...VAn,

or B = Al + A2 + ...t An' The corresponding operation in set theory is the

union of sets.

The product of n propositions A An is a new proposition formed as

l,cvc’

B = Al and A2 and .., and An meaning that B is true if all the Ai are true.
We write B = Al A2"'An' It corresponds to the intersection operation in set
theory.

Finally, the complement of a proposition A is a new proposition B, which
is true if A is false and false if A is true. We write B = A, Notice that
this operation can be performed on one proposition only.

These three operations are the fundamental ones and any other operation
on a finite number of propositions may be expressed in terms of products,
unions and complements. Of course, given a logical function of a number of

propositions we would like to know its truth value, A theorem which enables
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AqAz-An

OR GATE: B = /f\-lor Ag or ... or A, = AqVALV . .. VA,

A1 A2---An A“ Az--.An

B B
AqAyAg, AqAg A, A1 Az Ay

AND GATE: B =Aqjand Ay and . ..and A, = AjA, . . . A,

()
N

>

NOT GATE: B=not A=A

Figure 3.1. Logic Gates.




us to do so states that the truth value b of a proposition B which is a

" function of the propositions Ai’ is the same function of the truth values a,
of the propositions Ai' For example, the truth value of the AND gate 1s

b = A850008 0 If we use the indicator values O and 1 as defined before, we
see that b is 1 (true) if and only if all the a, are 1(true), which is the
definition of an AND gate., Therefore, the truth value of the logical function
can be found by simple operatlions on the truth values of the original proposi-
tions. However, since the truth value a of a proposition A can be either 0 or
1 (binary logic), the following properties should be observed for the results.

to be consistent:

1. Complement

0=1
- (3.1)
1=0
2, Union
a+a=a (hence, 1 + 1 = 1) (3.2)
l14+a=1 (3.3)
a+a=1 _ (3.4)
3. Product
aa = a (3.5)
a.0 = 0 (3.6)
aa = 0 (3.7)

Other operations with O and 1 follow the rules of arithmetic (e.g. 0+ 1 = 1,
0.1 = 0, etc.). Two laws which are often useful in the study of logical func~-

tions are the involution law (compare with Eq. (3.1)):

. (3.8)

(3]
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and de Morgan's law:

a+b=ab (3.9)
ab=a+hb (3.10)
Eq. (3.9) states that the complement of the output of an OR gate with inputs
A and B is the output of and AND gate with inputs A and B. Similarly,
Eq. (3.10) states that the complement of the output of an AND gate 1is the out-
put of an OR gate with inputs A and B.
A convenient way to find the truth value of a logical function 1s the
truth table. It lists the propositions and all the combinations of their truth
values with the corresponding truth value of the outcome,. Tablei3.l exhibits
the truth tables for an OR and AND gate with two inputs each and for a NOT gate.
With the help of the three basic logical operations that we have introduced
we can form any other logic gate which may be useful in a particular problem.
The most common of these is the r-out-of-n gate (Fig. 3.2). The output B is
true if any r or more inputs are true, The AND and OR gates are special cases
of this gate for r = n and r = 1 respectively. As an example, consider the
2-out-of-3 gate, Its output is

B=A A, + A, A, + A A

1 Ayt Ay Agt Ag A (3.11)

and its truth table is shown in Table 3.2.
The operations with 0 and 1 presented above belong to a formal mathematical
theory called Boolean algebra., It concerns the algebra of a set S with elements

ars az,...(in the previous case the set consisted of the elements 0 and 1 only)

in which the union (sum) and product are defined to obey the following axioms:
commutative law

a; +a, =a, + ay (3.12)

= a, a (3.13)

a 2 %1

a

172
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TABLE 3.1 TRUTH TABLES FOR OR, AND AND NOT GATES

A A B=A_+A C=A A

1 2 17 % 1%
0 0 0 0
1 0 1 0
0 1 1 0
1 1 1 1
A B=A
0 1
1 0

TABLE 3.2 TRUTH TABLE FOR A 2-0UT-0F-3 SYSTEM

Al A2 A3 B = A1A2 + A2A3 + A3A1
0 0 0 0
1 0 0 0
1 1 0 1
0 1 0 0
0 0 1 0
1 0 1 1
1 1 1 1
0 1 1 1
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r/n

Aq Ay A

Figure 3.2. r-out-of-n Logic Gate.
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associative law

(al + a2) + aj = a; + (a2 + a3) (3.14)

(al a2) ag = al(a.2 as) (3.15)
distributive law

ay + (a2 33) = (al + a2) (al + a3) (3.16)

al(a2 + a3) = a; a, +a) a, (3.17)

0 is the identity element for the union, 1.e.,

0+ a; = ay (3.18)
1 is the identity element for the product, i.e.,

lay, = a; (3.19)
For any ay its complement exists, i.e.,

ay + Ei =1 (3.20)

a a; =0 (3.21)

An Important property is the duality principle: in any Boolean expression
we can interchange unions and products and the elements 0 and 1 and thus produce
another valid Boolean expression. This enables us to study either the failure
or the success of a system,!

Suppose now that a fﬁnction consists of unions, products and complements

of n Boolean variables Xis XpyeeaXy (e.g. x, may be the indicator of a proposi-

i

tion and it can be 0 or 1). We call this function a Boolean function of the

variables x,, Koy oo X and we write ¢(x1, xz,...,xn). When we consider the

Boolean algebra of 0 and 1, it 1s clear that ¢(x,,...,x_) will also take the
1 n

values of its variables. In this case ¢ is called a switching (or structure)

function. It maps an n-dimensional vector x = (xl,,..xn) of 0's and 1's onto

0 or 1 (see Refs. 104 and 105).
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A theorem that is very useful in reliability studies concerns an expansion

of a switching function as follows

¢(xl, ngc..gxi,.n.,xn) = ¢(xl, xz,.o.yl,.o.,xn)xi +

4 ¢(xl, xz,..,,O,...,xn);i (3.22)

It states that the switching function 1s equal to the unlion of two products:
the first is the product of one of the variables times the switching function
with the variable assumed true and the second is the product of the complement
of the same variable times the switching function with the variable assumed
false,

A fundamental product of n variables is a product containing all of them
complemented or not (but a variable cannot appear together with its complement
in the product). For n variables there are 2™ such products, e.g., for n = 3

we have

X XX, xlx2§3, xl§2x3, xl;2§3, ;lx2x3, xlx2_£3, ;lIZXS’ X XyXq

(3.23)

that is, 23 = 8 fundamental products. Clearly a fundamental product is 1 if

and only if all its variables are 1. An important theorem is that a switching

function can be written uniquely as the union of the fundamental products which

correspond to the combinations of the variables which render the function true

(i.e.; ¢ takes the value 1). This is called the canonical expansion or disjunc-

tive normal form of ¢. For example, the switching runction of a 2- out-of-3

gystem is expanded as (usihg 3,23).
¢(xl,x2,x3)l= X XXy + X X Kq + X X, Xq + X XK g (3.24)
As another example, consider the gates of Fig. 3.3. The fundamental

products are

X Ky KXy, X3Xoy XX, (3.25)

206




Figure 3.3. Switching Function of a Logic Diagram Involving
a NOT Gate.
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and the switching function is

¢(x) = X%, + XX, + X1%, (3.26)

The expansions (3.24) and (3.26) can be simplified further as follow§,
We observe that in Eq. (3.24) the first two temms have the product X%, in
common while the remaining part (x3) of the first product appears complemented
in the second., Using the distributive law, .Eq. (3.12), we get

K X %y + xlxé§3 = xlxz(x3 + ;5) = XX,
Repeating the above steps we finally reduce Eq. (3.24) to

¢(xl, X5 x3) = X%, + XXy + X%y (3.27)

Similarly Eq. (3.26) can be written as

¢(xl, x2) =Xy + X, (3.28)

It is clear that no further simplification of the products (which, of
course, are not fundamental any more) can be achieved. Each product repre-
sents the minimum number of propositions, which, if true, render ¢ true,

e.g., in Eq. (3.27) if Xq and X, are true then ¢ is true (1), and in Eq. (3.28)

if ;i is true then ¢ is true., This discussion introduces the notion of a

minimal path set which is the minimal set of the variables and/or their comple-
‘ments, which by being true cause the switching function to be true,

There is an important difference between the switching functions of
Eqs. (3.27) and (3.28). 1In the firgt no complements of the variables appear,

while in the second x, alone 1s capable of yielding ¢ true. This is the con-

1

sequence of the presence of a NOT gate in Fig. 3.3. Logical structures of the
type of Eq. (3.27) are very common in applications and are called coherent or

5,106,107

monotonic structures. Their basic feature is that if a variable takes

on the value 1 it can only contribute to the truthfulness of the switching
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function (which, of course, 1s not the case with the variable x. of Fig. 3.3).

1
More formally a coherent structure functlon has the following properties:
o) =1, 1if x= (1, 1,...,1) (3.29)
i.e., 1f all the variables are true, ¢ is true,
¢(x) =0, 1if x = (0, 0,...,0) (3.30)
i.e., 1f all the variables are false, ¢ is false,

¢(x) = ¢(y), 1f x, =2y, foralld (3.31)

i.e,, 1f a variable is false and it éeccmes true, this cannot cause the
switching function to become 0, it either keeps its initial value, or it
becomes 1,

For coherent structures it is easier to visualize the meaning of a path
set: it is a set of the variables, which by being 1 (true) yield the structure
function true. A minimal path set is a path set which does not have another
path set as a subset, Thus, for a 2-out-of-3 system, the set {xl,xz,x3} is
a path set but not a minimal path set, since {xl,xz} is a path set also.

If the variables x X, ... X, form a minimal path set, it 1s conve-

]
il 12 ik
nient to define their product
S, = X, X, ae.. X, (3.32)
S T Tk

and use these products to write the structure function as
m .
0@ =1 - IT (1-s) ' (3.33)
=1 1

This equation simply expresses the fact that if any of the m minimal path sets
1is true, then the structure function is true (the symbol Hmeans the product
of the Boolean variables). In this manner we have reduced the logical struc-

ture to an OR gate with inputs the minimal path sets (Fig. 3.4).
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p(X)

OR

S-l Sz"' S

6=1-1 (1-S;
i=1

Figure 3.4. Representation of a Structure Function as the Union
of Minimal Path Sets.
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Another simple representation of the structure function can be achieved
with the use of minimal cut sets. A cut set is a set of variables which by
being false cause ¢(§) to be false, A minimal cut set does not contain another
cut set, By taking one variable from each minimal path set, we can form a
minimal cut set. Thus, for the 2-out-of-3 structure the minimal cut sets are
{xl,xz}, {xz,x3} and {x3,xl}. Since all the variables Xy ,’xi seeeyX, of a

1 2 Tr
minimal cut set must be 0 for ¢ to be zero, we define the variable

1

r
c, =1- J]G-=x,) (3.34)
1M

and we may represent the structure function as

k
o) = Jlc, (3.35)
i=1

Eq. (3.35) states that if any of the minimal cut sets is zero, then ¢ is zero.
The structure function, therefore, is reduced to an AND gate, as shown in
Fig. (3.5).

The minimal path (cut) sets are extremely useful for the analysis of
complex structures, since they deal with the critical combinations of the
variables, that can yield the switching function true (false).

3.A.3 Reliability Diagrams and Fault Trees

Two of the most useful logic diagrams are the reliability block diagram
and the fault tree,

The reliability diagram shows the functional relationships of the compo-
nents of a system which is intended to accomplish a specified function between
two points A (start) and B (finish). The series and parallel systems discus-
sed in Sections 2.C.2 and 2.C.3 (Fig. 2.24 and 2.25) are obviously such dia-
grams. In practilce most systems can be depicted as combinations of elements

in series and parallel (coherent structures),
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$(X)

AND

Figure 3.5. Representation of 8 Structure Function as the Product
of Minimal Cut Sets,
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A simple example i1s the following: an experiment is conducted in a room
in which the temperature must be kept within specified limits, otherwise the
experiment should stop. Three sensors (thermocouples) monitor the room tem-
perature and thelr outputs ‘are connected to an indicator light., 'If the tem~-
perature is within the acceptable limits the light is off, otherwise the light
is onvand an operator proceeds to stop the experiment. To avold false signals
it is decided that at least two out of the three sensors must give an output
for the light to be on (i.e,, 2-out~of=-3 logic is used). Denoting the sensors

as S S, and the light L, the reliability diagram is shown in Fig. 3.6.

10 520 53
In 3.6.a and 3.6.b the dlagram is drawn using series and parallel combinations.
The use of the 2-out-of-3 gate in 3.6.c simplifies the diagram in that every

component appears only once.

The switching function ¢ of this logical configuration is readily found

to be

¢ = L(8;S, + S, + 8;8)) (3.36)
and the minimal path sets are

{s,,8,,L}, 15,,5,,L}, {84,5,,L} (3.37)
The minimal cut sets are

L}, {s,8,}, {s,,84}, {s5,8,} (3.38)

The logic diagram can be redrawn in the form of a tree if we define a top
event (or proposition) as system success meaning that the temperature is
correctly monitored by at least two of the sensors and the light is turned on.
The tree is shown in Fig. 3.7 and it is equivalent to the block diagrams of
Fig. 3.6. Using the duality principle we change the top event into SYSTEM
FAILURE, interchange unions and intersections and replace the inputs by their

complements, The resulting tree is shown in Fig. 3.8.
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Figure 3.6. Different Forms of a Reliability Diagram.
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SYSTEM
SUCCESS

®

© 0O OO ©

Figure 3.7. A Logic Diagram in a Tree-Form.
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SYSTEM
FAILURE

Figure 3.8. The Dual Form of the Tree of Figure 3.7.
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The common feature of all the previous diagrams is that they depict the
logical interconnection of the hardware of the system under study. In a.
safety study, however, there are additlonal factors which influence the per-
formance of the system, These may be incorporated in the tree diagram and
since it is more convenient to work with fallures than successes we use the
tree which has as top event a specified failure. Thus the fault tree approach
results which has found wide applicability in safety analyses,

For a formal application of the method special symbols are used in addi-
tion to the logic gates (Fig. 3.9 and 3.10).

The unfavorable event which is put in the top is TEMPERATURE OUTSIDE
LIMITS NOT DETECTED and it is analyzed as shown in Fig. 3.11. Notice that
all possible causes of failure to monitor the umacceptable temperature are
included. 1In fact the fault tree shows that failure of the operator alone
to notice the light may cause the top event to occur, even though the hardware
of the system function properly. Another detalled construction of a fault
tree is given by Haasl (Ref. 108) in one of the early papers on the method.

It is already apparent that the construction of the tree requires an
intimate knowledge of the system and its environment. The fault tree of Fig.
3,11 is only one of the trees that might be drawn for the above example; in a
real situation there may be other additional factors which would be deemed
important enough to be incorporated in the tree, An attempt to develop a
formal methodology for fault tree construction was made hy Fussell (Ref. 109).
It is limited to electrical systems and considers only hardware failures,

The modes of fallure of each component are stored in a library from which a
program called DRAFT draws the appropriate primary inputs that can lead to the
top event. To make the method systematic a whole set of definitions and clas-

sifications of events and other conditions is introduced, so that after a
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THE EVENT X HAS BEEN ANALYZED TO ITS
CAUSES AND IS STATED ONLY FOR CONVENIENCE
IN READING THE FAULT TREE

X HAS NOT BEEN ANALYZED TEMPORARILY BUT
IT WILL WHEN THE FAULT TREE IS COMPLETED

X IS A PRIMARY INPUT EVENT WHICH NEEDS NO
FURTHER ANALYSIS SINCE ITS PROBABILISTIC
CHARACTERISTICS ARE KNOWN

Figure 3.9. Fault Tree Symbols,
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INHIBIT GATE: ITS OUTPUT IS PRODUCED BY
THE (SINGLE) INPUT IF THE CONDITION X IS SATISFIED

TRANSFER-IN SYMBOL

TRANSFER-OUT SYMBOL. THE TRANSFER
SYMBOLS CONNECT PARTS OF THE TREE
.DRAWN IN DIFFERENT POSITIONS.

Figure 3.10. Fault Tree Symbols.
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TEMPERATURE
OUTSIDE LIMITS
NOT DETECTED

LIGHT IS
NOT ON
OPERATOR
FAILS TO
NOTICE THE
LIGHT
SENSORS
POWER OFF FAIL

LIGHT
BURNT
ouT

%
2 4
T OO O®®E

Figure 3.11. Fault Tree Example.
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certain stage in the analysis of the top event has been reached, the program
proceeds to complete the tree by piecing together the primary inputs.

3.A.4 Probability Relations

The logic diagrams form the basis upon which a probability analysis can be
carried out. From the diagram, the laws of probability theory and the primary
input information certain useful probabilistic quantities for the system and
its subsystems can be calculated. A systematic approach is presented by
Murchland in Ref. 110, while Refs. 111 and 112 contain the basic ideas and
expressions.

The logic diagram (either a reliability block diagram or a fault tree)
represents logical relations of propositions or events, as they are commonly
called. We have agreed in Sec. 3.A.2 to assign the truth value (indicator
variable) 1 to a true proposition and the truth value O to a false proposition
The expected value of the indicator variable X, of a proposition is the probab-
ility that the proposition is true, i.e.,

p; = Bl = plx;=1] (3.39)

For a success diagram then the proposition will express successful perfor-
mance and pi(t) will be the reliability or availability (if a maintenance
scheme is employed) of the input, For example, in the block diagrams of
Fig. 3.6 and in the tree diagram of Fig. 3.7 the input L corresponds to the
statement '"light is turned on". In a fault tree the propositions express
failures and pi(t) will be the unreliability or the unavailability of the input.
The inputs "fuse blown", "power fails" etc. of Fig. 3.1l serve as examples.
To avold confusion we will denote the availability as pi(t) and the unavailabil-

ity as qi(t).
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If the primary inputs are under a repair policy another quantity that is
needed 1s the failure intensity wf(t) (which is a renewal density in the sense
of Section 2.D.3). TIts definition is

wf(t)dt = probability that a failure occurs in the interval (t,tddt)
Similarly we define the repair intensity Wr(t) (see Section 2.D.3).

An item or vertex 1s a generic term which refers to the whole system, a
subsystem or a primary input. In Fig, 3.6.a the components between A and C
can be referred to as an item and in the fault tree of Fig. 3.11 the top event
and the events '"Light is not on'", "power off'" etc. are items. For an item two
fundamental relations are true. The first relates its unavailability q(t),
its expected number of failures wf(t) and its expected number of repairs Wr(t)
both evaluated over the interval (0,t); this relation is

a(t) = W (t) - W_(e) (3.40)
gilven that initially

q(0) = W_(0) - W _(0)

The proof of Eq. (3.40) follows if we notice that

(exact number of failures) - (exact number of repairs) = {1 if the item is
' failed at t
0 4if the item is
good at t,

Taking the expectations of both sides of this equation we derive Eq. (3.40).
For the availability the corresponding relation 1s, of course,

P(E) = 1 = [W.(t) = W _(8)] (3.41)

which is Eq. (2.169) for a component.
The quantities wf(t) and wr(t) are evaluated by

t

We(t) = fwf(r)dr + q(0) (3.42)
0
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and

t

wr(t) = ‘[wr('r)d'r (3.43)

The second relation refers to the interval unreliability, which is
defined as
U(s,t) = probability that the item is failed at s or, if it
is good at s, it wlll fall before t.
For the unreliability upper and lower bounds are given as follows

max q(o) £ U(s,t) < min {q(s) + Wf(t) - wf(s), 1} (3.44)
ssast

For the interval (0,t) this relation becomes

max q(a) < U(O,t) £ min W, (e, 1} (3.45)
0<ast

For non-repairable items we have

U(s,t) = q(t) (3.46)
The proof can be found in Ref. 110.

The above relations, though very useful; do not indicate how the quanti-
ties appearing are calculated from the primary input information., A fundamental
assumption for such an analysis is that the performance of each primary input
is statistically independent of that of the other inputs. This assumption
forbids, for example, the presence of two components in parallel with one
repairman. However in such special cases this subsystem can be analyzed with
the methods of Sectioms 2.D.4, 2.,D.5 or 2.D.6 and the resulting q(t) and wf(t)
of the subsystem are used as representative functions of a single input to the
logic diagram.

A probability analysis is possible if the switching function of the item
is available. Then we utilize Eq. (3.39) and we take the expectation value of

¢(x), or we use elementary probability laws to find the unavailability (ox
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availability) of the item in terms of the q's (or p's) of its predecessors.

We recall that for an AND gate (items in series) the structure function is

and the probability of this intersection of independent events is
n
ag(t) = Jfq, (£) (3.47)
i=1 "1

For an OR gate (items in parallel) the switching function is

= Al + A2 +...F An

and the probability is found from Eq. (2.2) which we rewrite here

ag () = EqA (t) - Z 5 a4 () +

j=1 "3 i=1 j=4+1 “1i7§
E +1
+ 2 L X q,, - DT, () (3.48)
i=1 j=4i+1 k=i+2 i3k 172° """ n
For two events the formula gives
qa(t) = q, (£) +q, (t) - ¢ (t) (3.49)
B Al A2 AlAZ

For more than two inputs Eq. (3.48) is quite complicated, but useful bounds

can be estimated as

qg(t) j2=:1 q, (6 (3.50)

n-1 n
ap(t) 2 Z %, (© - 2 X q, (0 (3.51)
1=1 j=i+l i3
etc.
Finally for a NOT gate (complement of an event) we have

B =A4A

and qp(t) = 1 - q,(t) (3.52)
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Consider as an example an item which is a 2~out-of-3 system. Its switching
function is given by Eq. (3.27) and applying the above rules we 'find for the
probabilities

q(t) = qy(B)q, (k) + q,(e)aq(t) + qq(t)q,(t) - 2q,(t)q,(t)q (L) (3.53)

The same result is obtained if we start with the form of the switching function
given in Eq. (3.24) and expand the complements as in Eq. (3.52).

The switching function can be found by the methods of Section 3.A.2. We
start from the items of least complexity and proceed to build the systéﬁ switch-
ing function (or directly the probability expression). Special care is required
when one item appears more than once in the structure (or, equivalently, if an
item has two or more successors in a tree diagram). In cases like a 2-out-of-3
system the subsystem is analyzed separately and its output is added as a single
input to the whole system. Another approach is to use the expansion of
Eq. (3.22). Logical structures in which all items have only one successor are
called simple and obviously their hierarchical structure makes them easier to
analyze. For detailed applications of this method of successive reduction of
the diagram see Refs., 113 and 114. For large block diagrams the British pro-
gram NOTED (Ref. 115) utilizes the method of reduction to estimate the unavail-
ability, Various distributions for the inputs are available (exponential,
normal, log-normal, Weibull) and repair and periodic inspection can be included.

For every item the unavailability q is a polynomial of the unavailabilities
qy of each predecessor; each q, appears in the first power in the polynomial
(this is clear from the way the item unavailability was constructed). Therefore,

we can write

q = q(q4, dgsererqy) (3.54)
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and for the partial derivatives

éi_ = independent of qj.

dq,
9

For coherent structures the following is true (cémpare with Egs, (3.29),
(3.30) and (3.31))

q(0,0,...,0) =0 (3.55)
(if all predecessors are good the item unavailability is zero)

q(1,1,...,1) =0 | (3.56)

(if all predecessors are falled the item is failed also)

9q
3q. 2 0 (3.57)

J
(if the unavailability of a predecessor increases the item unavailability cannot
decrease; as a result NOT gates cannot be present).

These introductory comments will now be used to derive an expression for
the fallure intensity of the item wf(t) in terms of the fallure intensities of
its predecessors Wf,i(t)' A further assumption is introduced here which states
that in the interval (t, f + dt) only one component can fail, the probability

of two or more failing being of second or higher order in dt. Under this

assumption and for coherent structures it is proven in Ref, 110 that

- aq(t)
we () = Pll we 4 () 34, (O (3.58)

predecessors
Notice that g%~ can be interpreted as the probability that the item will be
i
failed, if the predecessor i fails.,

A similar relation exists for the repair intensity, i.e.,

‘ ap(t)
t) = (t 3.59
Wyl ) ;%i Wr,l( ) Bpiit) ( )
predecessors
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The expected number of failures or repairs in (0,t) can be found by
integrating Eqs. (3.58) and (3.59) as Eqs. (3.42) and (3.43) indicate,
Several simple examples will illustrate the use of Eq. (3.58):

AND gate (series system), using Eq. (3.47),
v g(0 = 25w, () JT q, (©) (3.60)
£,B £,4, A

1
j#i

OR gate (parallel system, using Eq. (3.48),

9q, () o n=l 1 41
e =1-2,q, () + 2 2 q, , () - .. DT g (t) (3.61)
99, =1 Ay 421 k=i+1 Ayt ;ngi

: i J# et ’

therefore for an OR gate with two inputs

we g(t) =w. , (£) py (&) +we , (£) py (£) (3.62)
£,B £,4; A, £,A, A

2-out-of-3 system, using Eq. (3.53),

we = (Qp+a3-009)we 1+ (A3H3-0793)w 5 + (9749-9395) W 4 (3.63)

The relations developed above assume that the probabilistic characteristics
of the primary inputs are known exactly. As discussed in Section 2.B.5 though
the parameters of the distributions are estimated from tests either as point
estimates or in an interval with a certain confidence. 1In the latter case the
question arises how the uncertainty about the primary input information is
carried over to the probabilistic treatment of a complex logical structure,
Rosenblatt (Ref. 125) gives a good introduction to this problem of confidence
bounds for complex structures and the book by Mann, Schafer and Singpurwalla
(Ref. 126) surveys the statistical techniques employed as well as an extensive
list of references.

Murchland and Weber (Ref. 111) utilize simple statistical relations to

estimate the mean and the variance of the unavailability of a coherent structure
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given the corresponding quantities for the primary inputs. From the mean and
variance a conservative confidence bound is calculated for the unavailability
with the use of Tchebycheff's inequality, Eq. (2.9), which we reproduce here

Pln-ko < X <m + ko] 2 1 - & (3.64)
k

As it has been stated before, the unavailability of each item is a linear
polynomial of the unavailabilities of its predecessors. Thus the mean of the
item unavailability is found by inserting in the polynomial the average
unavailabilities of the predecessors. For the varilance we expand the polyno-
mial about the mean values of the variables according to the multinomial
theorem, square it and we take expectations. For example, the output of an

AND gate with two inputs has the polynomial (Eq. (3.47))

a(t) = q;(t)q,(t) (3.65)

The relation for the means is

q(t) = q;(8)q,(t) (3.66)
To find the variance we write
a(t) - q(t) = q,(q;-49;) + q;(4,-95) + (47-91) (3,-9,) (3.67)
and upon squaring and taking averages the cross products vanish the final result

being

2. 2.-2. 2 -2 2
0 =0919,799 v 9 (3.68)

Similarly for an OR gate we find

and

2 _ 2 2 — 2 2 -2 2
o ol 02+ (1—q2) 01+ (l—ql) 02 (3.70)
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Therefore, starting from the bottom of a tree and proceeding to the top with
the use of the above relations the mean and variance are calculated. The
method can be applied to simple trees with independent inputs which are either
nonmaintained or in the steady state, When the components are maintained the
authors discuss various methods of approach and in the case of repairable
inputs they indicate how the mean and variance of the failure intensity can he
calculated. The method is essentially the same as above,

3.A.5 Solution Via Cut Sets.

The notion of minimal cut sets (mes) introduced in Section 3.A.2 and the.
probability relations of Section 3.A.4 can be combined to provide with a
systematic and economical method of analyzing the probabilistié behavior of a
logic diagram. The method consists of identifying the mes's, deriving the
unavailability and failure intensity expressions for each mes from those of the
primary inputs and finally the corresponding quantities for the top event are
determined from those of the mecs's, It should be noted that in practice we
talk about cut sets whenever we study failures; strictly speaking, in a fault
tree the combinations of components which can cause the top event to occur
should be called path sets, since they render the top event true., We will
follow the common usage. Furthermore, we will refer to logic diagrams in the
form of trees, since any logic dlagram can in general, be represented by a tree,
All the structures are assumed coherent, i.e,, only AND and OR gates are allowed,

Identification of Minimal Cut Sets.

For trees with relatively few inputs the mcs can be identified by inspec~
tion. Most often, however, such an approach is very inefficient, if possible
at all, since the number of mcs increases very rapidly, as the complexity of
the tree increases. There exist several approaches utilizing the computer as

follows:
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1. Deterministic and Monte Carlo methods (PREP code, Ref. 116)

The mes's are identified either deterministically or by Monte Carlo
simulation. In the deterministic method each input is failed individually and
if the top event occurs that component is a mcs. The procedure 1s continued
with the components failing in combinations of two, three etc. Each time the
cut set 1is checked whether it contains another cut set in which case it is
rejected. The method is reliable but it takes long computer times for large
trees and usually it is stopped when the mcs's with one and two components
have been found (if there ave n primary inputs then the number of their combi-
nations taken k at a time is (E). For k = 3 and n = 500 and assuming that 1t

takes the computer'lO_5

min., to check each combination, the required time to
check all of them is of the order of lO3 minutes).

In Monte Carlo simulation the components are failed randomly with times
of failure chosen from their failure distribution., If, for example, the ith

component has an exponential distribution, a random number r (0 < r < 1) is

generated and the time of failure ty is computed from
-Aiti

L= Sy (T = mission length, £, < T) (3.74)

Thus a set of times-to-failure is obtained for the components which are ordered

in increasing order, i.e.,

The components are failed successively starting from the one with the smallest
time to failure until the top event occurs, These components then form a cut
set which is again tested against the already found cut sets, so that only the
mes's will be determined. This procedure identifies first the mecs's which are

most important for the system, since the use of Eq. (3.71) insures that
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components with high failure rate are failed more frequently. By selecting T

to be very small the times~-to-fallure are chosen from the uniform distribution
ALt £,

thus the failure rates are unimportant (to see this we expand r =-Xifl = Ei)
The PREP code can handle trees with up to 2000 inputs and up to 2000 gates,
2, Other Methods
In Ref, 117 a method is presented, which determines the mcs's utilizing
the unique factorization theorem of prime numbers (that 1s, every natural
number can be expressed as a unique product of prime numbers)., Each primary
input is assigned a prime number and each mcs is represented by a unique product
of prime numbers which then identifies the primary inputs of the mcs. For

example, in Fig. 3.12 the events Xy, X are assigned the prime numbers

2* *3
2, 3, 5 respectively. Working from the bottom we have

event A = x, X, = 2 x 3 =6

[p)
<
©
=]
lmy
o~}
]
»
+
»
]

2 34+ 5 (the summation is not carried out)

+B=6+3+5

-3
Q
S
It
S

but 3 is a factor of 6, so the latter is eliminated and we have
TOP = 3+ 5
therefore there are two mcs's, {xz} and {x3}.

This is the basis of the program ELRAFT, which also proceeds to calculate
the unavailability of the TOP event,

A method which proceeds from the TOP to the primary inputs by successively
eliminating the secondary events is'presented in Ref, 118, Each AND gate
encountered increases the size of a cut set while an OR increases the number

of cut sets,
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Figure 3.12. Sample Fault Tree.
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Evaluation
Having identified the minimal cut sets we can proceed and evaluate the
unavailability of each mcs and its failure intensity. The relations derived
in Section 3.A.4 are immediately used for this task (see also Ref. 119).
Each mcs Ci’ i=1,...,k, by its definition, is the product of all its
inputs, Therefore, Eq. (3.47) for an AND gate yields the unavailability of

Ci in terms of the unavailabilities of its inputs as

qg (&) = JT a,(v) (3.72)
i JEC i

{(the notation jeCi indicates that the product is to be taken over all the
components of Ci).
Similarly, for the failure intensity of Ci we have a result analogous to

Eq. (3.60), i.e.,

0, (O) = Lowe (0 IT (3.73)
jec mEC
] m# 3

Since the top event is the union of the mecs's, its probabilistic quanti-

ties can be calculated. Ea. (3.48) is directly applicable for the unavailabil-

ity, i.e.,

2 T 5
qp(t) = q, (t) - q (t) + (- ¥ q (t) (3.74)
T C:| in1 Jzi;l-l CiC Cl" Ck

The bracketing procedure of Egs. (3.50) and (3.51) can also be applied here.

Special care should be taken, when the unavailabilities of products of mcs's
are calculated, since one or more components may appear in more than one mcs.
In this case the theorem of conditional probabilities should be used, i.e.,

P(cicj) = P(ci)P(cj/ci) , (3.75)
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An upper bound to qT(t) can be found by utilizing the expansion (3.33),
which here becomes (recall that what we call here a cut set is a path set in

the theory of Section 3.A.2)
k
ToP = 1 - J] (1-c,) (3.76)
=1

From Eq. (3.76) we get

k
qp(t) <1 - JT (1-q, (0) (3.77)
j=1 3

and we reason as follows: 1f the mes's did not have common components, (3.77)
would be an exact equality, as it is readily seen, if the expectations of both
sides of Eq. (3.76) are taken. The right-hand side of Eq. (3.77) assumes that
no such common components exist, thus in the case of common components, it
overestimates the unavailability of the structure, hence the inequality sign
follows.,

The failure intensity of the top event is given by expressions analogous
to Eqs. (3.58) and (3.61)., It is clear that the evaluation of the partial

derivatives (Eq. (3.61)) of the unavailability polynomial (Eq. (3.74)) is quite

complex. The general expression is

8qT(t)
we p(t) = azl",l ) wf,ci(t) EG) (3.78)
. i i

where w, c (t) is as given by Eq. (3.66) and
9
i

3q, (t) k k=1 k ”
5. (o) 1T 2 qg (0) ¥ PIED» qg ¢ () + (-1D7q gy (8) (3.79)
c =1 73 i=l m=j+1 i m L44C,
1 #i
J#1 i1 mii j

Vesely (Ref. 119) proceeds to evaluate these terms as functions of the

component unavailabilities., It is worth noticing that due to the smallness of
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the unavailabilities upper and lower bounds can again be found for Ve T(t).
®

An upper bound, which is usually satisfactory, is

k

w. (t) € 2, w
£,T P AN (3.80)

where the right-hand side is simply the sum of the failure intensities of the
minimal cut sets (Eq. (3.66)).

A computer code based in the above analysis ;s the companion to the PREP
package, KITT-1 and KITT-2 (Ref. 116).,

KITT~1 calculates the unavailability and failure intensity of the minimal
cut sets and the top event from those of the primary inputs. Primary failures
are assumed exponential; the components may be non-repairable or repairable with
either constant repair rate or fixed time~to-repair (see Sec. 2.D.3.).

KITT~2 does the same calculations but it is a multiphase code, i.e. the
characteristics of the components may change (arbitrarily) at certain times.
Up to 50 phases can be handled.

3.A.6 Simulation Techniques

One of first methods of estimating the unavailability of the top event in
large fault trees was by simulation on a computer. The method has already been
applied in Sect. 3.A.5 to find the minimal cut sets.

The idea of a Monte Carlo simulation is to generate random numbers and
from these and the probabilities that the components .are in a certain state
(up or down) a set of random component states is generated. Then the tree
logic is checked, the state of the top event is recorded and the process is
repeated. Each such cycle is called a trial and their total number as well as
the number of trials in which the top event occurs are used for quantitative
analysis of the system. The principles of Monte Carlo simulation can be

found in Refs., 8, 120 and 121.
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The random numbers are generated by a computer algorithm. A frequently
used method is the congruential multiplicative method. The random numbers are

generated from the relation

Xj = Q, xj—l 4+ ¢ (wmodulo m) ' (3.81)
where m is an integer defining the period after which the numbers repeat
themselves, o is a scale integer factor and c is an integer. The expression

modulo m means that Xj is the remainder of the division of (axj_ + c) by m. The

1
number m is chosen to be larger than the digit capacity of the computer and
usually m=2n, n=20 or 30. If we choose ¢ odd and o=4k+l (k = integer) the
period of the random numbetrs is m (and, as a consequence of the above choice
of m, very long). Then the numbers Xj/m are uniformly distributed in the
interval (0,1). As a simple example, suppose that m = 23 =8, c=1, oo =5

and we start with x = 2, Then 5 X 2 + 1 = 11 and since 11 = 8 + 3, the next
)

number is X = 3. Continuing this way we generate the sequence

x = 2,3,0,1,7,4,5,2,3, etc.,

with period 8., Dividing by m = 8 we scale the numbers in the interval (0,1),
i.e., r=0,25, 0.375, 0, 0.125, 0.875, 0,50, 0.625, 0.25 etc.

Consider now a fault tree with non-maintained primary inputs., From the
random numbers r and the cumulative failure distribution Fj(t) of each input

we generate a random time-to-failure for each by writing
r=F,(T,)
J( ]
hence

T, - ijl(r) i (3.82)
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If Fj(t) =1-e J we have

T, = = L In(l~r)
h| Aj

but l~r is also uniformly distributed in (0,1), thus we can generate Tj from

T = --Xinr . (3.83)

Ordgring the Tj in increasing order the components are failed successively
starting from the one with the smallest T and proceeding until top failure occurs
or a specified time has elapsed. This ends one trial and the process is
repeated from the beginning. This procedure is employed by the program SAFTE-2
(Ref. 105), which can handle up to 500 primary components with exponential
failure distributions. The output yields the system MITF and analyzes its
distribution function.

If the components are repairable, in addition to random times-to-=failure
the program generates random repair times for each component from its repair
distribution. The random times are again ordered and each component is failed
and repaired according to its corresponding times, until failure of the top
occurs or the mission time has elapsed. This technique is utilized in the
program SAFTE-1 (Ref. 105). Failures are exponentially distributed and
repairs are normally distributed. The program calculates the MITF, MITR and
related statistical quantities for the system. Another program along the
same lines was developed by Crosetti (Ref., 122), Exponential failure times
are again assumed but the repair model can be either the normal distribution or ‘
the fixed-time—to-repair model. The output includes the estimate of the failure

probability of the system and contributions to it from the failure of subsystems.
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If the components have reached their steady-state unavailabilities
qw(A/u+A or AT/1+AT , see Section 2.D.3) their states are determined by
comparing q  with r. Thus, if r < q, the component is assumed failed and
repeating the comparison for all inputs a state of the system is generated and
the occurrence or not of the top event is checked (SAFTE-3, Ref. 105).

When the random failure and repair times are calculated from Eq. (3.82)
the process is called direct simulation., However problems regarding the
rniumber of trials arise due to the smallness of the unavailabilities related
to a fault tree (Ref. 123). If the top failure has occurred n times out of

N trials, its probability is estimated by

g =23

9=5x - (3.84)
The variance of a is

52 . 1d-=q) . (3.85)

(binomial distribution).
A
Suppose now that we wish to estimate q to within *10%, meaning that the
sampling will continue until the standard deviation of the estimate a is less

than or equal to 10% of a. This leads to

g(_];ﬁ_gl =0']-::1\

or using Eq. (3.84) and the approximation 1 -~ gq =1,

I
o
-
=\

or

n = 100, (3.86)
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Therefore the top failure must occur at least 100 times before the trials stop.
If its probability is of the order lOaa the number of trials should be

N = n/lOm4 = lO6 which is prohibitive in terms of rumning computer time. To
overcome this difficulty the technique of importance sampling (Ref. 123) is
employed. The random times are not calculated from the time distributions,
Eq. (3.82), but from an artificial distribution which predicts higher failure
probabilities for the mission time interval. The use of weighting factors in
the calculation of a describes the results and an estimate of a is obtained in
shorter computer times. Some deficiencies of the method are argued in Ref.
124, The SAFTE programs and the one developed by Crosetti have utilized
importance sampling.,

The advantage of Monte Carlo methods over the analytical approach of
Section 3.A.5 is the greater flexibility. Special logic symbols (like priority
gates, NOT gates et al.) can be handled, as well as other special features of
the system regarding its operation and maintenance. Furthermore uncertainties
in the input data can be included and their effect on the top event probability
can be analyzed (Ref. 125).

3.A.7 Applications

Block diagrams and fault trees have been used extensively in the literature
of probabilistic safety and the purpose of this section is to give several
references where detailed analyses are presented.

One of the early computer programs which handled block diagrams was
ARMM (Aﬁtomatic Reliability Mathematical Model). The program selects combina-
tions of components which can cause system failure (i.e. cut sets) but those
with a pre-specified number of components (e.g. 3 or 4) or less. Then it
computes the reliability of the system (no repair is allowed) and the contribu-

tion of each failure mode and component to the system unreliability. Details and
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applications to the reliability analysis of a reactor primary containment
and safety injection system are given in Ref. 127,

In Ref. 128 block diagrams are employed to analyze a reactor automatic
protective system. The system monitors a number of reactor parameters (e.g.
temperature, pressure) and if they are within acceptable limits the sensors
feed signals to the shutdown system which keeps the control rod actuators
energized. In case the parameter limits are violated no signals are sent to
the shutdown system and the control rods rapidly fall into the reactor. Two
block diagrams are drawn for the two possible failures: the reactor is shut
down while no parameter exceeds its limits (failed safely) and the reactor is
not shut down while the monitored parameters are actually beyond the accept;
able limits (failed dangerously). The diagrams are reduced to simpler forms
by combining series and parallel elements successively and the unavailability
is evaluated. 1In addition, critical components are identified, A study of a
similar system is given in Ref. 129.

Snaith (Ref. 130)‘uses block diagrams to study the probability of failure
per demand of an electrical supply system (Fig. 3.13), The 500 Mw(e) turbo-
alternator is connected to the 400 kv metwork and it also feeds the 11 kv
reactor unit board through the two unit transformers. The two bus—section
switches (5 and 6) divide the board into three sections of which the two outer
ones feed three primary coolant circulators (GCl, GC3, GC5 and GC2, GC4, GC6)
each. If a loss of supply via the transformers occurs the underfrequency
relays (1 and 2) detect it and the two gas tuyrbines (4 and 7) start automatically
feeding the two outer sections of the board with power and one gas circulator
on each (GCl and GC2) starts running again. These two circulators are sufficient
for cooling of the reactor and all other connections with the two sections of

the board are removed. The logic diagram for the successful performance of the
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Figure 3.13. Diagram of Electrical Supply System. (Ref, 130)
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system is shown in Fig. 3.14, The component data are presented in Table 3.3,
Since the maintenance period is one year a calculation was carried out to
estimate how the probability that the system will fail when needed (per demand)
increases between two inspections. This was done with the use of the program
NOTED and the results are shown in Table 3.4. A detailed study of an
emergency core cooling system using the same approach as in the previous
example is presented in Ref. 131,

The deductive logic of the fault tree has made it a useful and popular
tool in various fields. The aircraft industry was one of the first to utilize
fault trees in safety studies., Feutz and Waldeck (Ref., 132) present a detailed
fault tree for the top event "“aircraft destroyed." The tree was solved by
simulation and the probability of the top event occurring as well as the
critical paths leading to it were calculated. Based on this information the
design was modified to increase safety and a new fault tree was drawn and
solved. The authors discuss the problems which arise in the construction and
solution of a fault tree.

Crosetti and Bruce (Ref. 133) show how the fault tree analysis can be
proven useful in system studies, From the nuclear industry they summarize the
results of Cole (Ref. 134) concerning the reliability of the fog spray system
of Hanford's N-Reactor, Then they proceed to discuss the possibilities of
using fault trees in reliability and optimization studies of communications
gystems, in the automobile industry, in freeway planrning and in eval.iating
marketing alternatives,

Salvatori (Ref. 135) uses a fault tree to establish acceptable probabilities
of occurrence for the events which may cause a dangerous situation in a nuclear
power plant (Fig. 3.15). The top event 1is called "limit consequence status"

and it represents the event which, when reached, can be classified as a
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Figure 3.14. Reliability Diagram for the Electrical Supply System of Figure 3.13.




TABLE 3.3. COMPONENT DATA FOR THE LOGIC DIAGRAM OF FIG. 3.14. O IS THE FAILURE RATE PER YEAR,

Tc IS THE INSPECTION INTERVAL AND Tr IS THE MEAN REPAIR TIME

VA2

Item Component 6 Te Ty Remarks
No. (years) (years)
1, 2 Under frequency relay 0.01 1
3, 8 Transformer circuit 0.005 1 4 x 10_4 Faults causing failure to trip on demand
breaker (11 kV)
5, 6 Bus~section circuit 0.005 1 4 x lO—4 Faults causing failure to trip on demand
breaker (11 kV)
4, 7 Gas turbine — — — 0.023 probability of failure to start
13, 14 Gas turbine circuit 0.02 1 4 x 10—4 Faults causing failure to close on demand
breaker
9, 10, Circulator circuit 0.005 1 4 x 10—4 Faults causing failure to trip on demand
11, 12 breaker
17, 18 Circulator circuit 0.005 1 4 x lO_'4 Faults causing spuriocus opening
breaker (i.e., pre-
selected c¢’rculators)
15, 16 Bus—-bar 0.006 1 5 x lO—3 Faults per bus-bar section

19, 20 Circulator 0.0l probability of failure to start




TABLE 3.4, PROBABILITY OF FAILURE PER

DEMAND TO RESTORE TWO GAS CIRCULATORS

Probability
Time of failure
(years) per demand
0.0 0.063
0.2 0.080
0.4 0.096
0.6 0.111
0.8 | 0.126
1.0 0.141
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Figure 3.16. Fault Tree for the Assessment of Acceptable Probability Levels
for Potentially Hazardous Events (Ref. 135).
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disaster., Its acceptable probability level is set at lOm6 per year, which is
deemed to be of the same order as natural disasters. Using the deductive logic
of the fault tree the chains of events that can lead the reactor to its limit
consequence status are developed and judgment is applied to assign acceptable
probability levels for each., If for a specific plant the probability of an
event is greater than the level established above, special care should be taken
to reduce it below the limit. As an example the author mentions the results of
a study concerning the probability of a missile generated by a disk rupture hit-
ting a critical plant component. At design speed this probability was esti-
mated to be 10—12/yr and at overspeed lO—lO/yr. The accident is classified as
a non-design plant event, thus its probability of occurrence should not exceed
the value 10_7/yr (Fig. 3.15); since the estimated probabilities are much
smaller than this limit, it is concluded that it is not necessary to make pro-
visions in the plant design to contain the consequences of this accident.
Balfanz (Ref., 136) suggests the use of fault trees to estimate the failure
rates of mechanical and electrical equipments., The method can be used as a
supplement of the statistical analysis of the failures of identical items or
as a method of estimation when statistical data are missing. Stewart and
Hensley (Ref. 137) study a chemical plant in which oxygenated material is
produced from oxygen and hydrocarbon. Figure 3,16 shows the physical process
that takes place. The hydrocarbon and the oxygen are led into the reactors to
produce the oxygenated material under high temperature and pressure. The rest
of the cycle is self-explanatory. The objective of the study is to design an
automatic protective system to prevent explosion. The fault tree of Fig.
3.17 was drawn to identify the events that could lead to explosion and which
parameters should be monitored by the protective system. The numbers in the

figure show the parameters selected.
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Figure 3.16. Process Diagram for a Chemical Plant (Ref 137).
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In Ref, 138 Griffin utilizes the visibility that the method provides to
compare the relative safety of two alternatives for the containment system of
the Heavy Water Organic Cooled Reactor. His second application concerns the
increase of the risk that the public is subjected to due to the existence of
a sodium facility in a certain area. Finally, in the last application a fault
tree is drawn to analyze the risk that the owner of a test facility complex
assumes due to the potential of damage to the population, the environment etc.
Risk is defined as the product of the probability of damage times its con-
sequences., The tree is shown in Fig, 3.18.

The safety systems of a nuclear power plant have been popular subjects of
investigation via fault trees. Hortner et al. (Ref. 139) estimate the unavail-
ability of all the systems (mechanical, protective and power supply) that are
required to function in the case of rupture of the primary coolant line in a
PWR. The results for the overall system and for each subsystem studied
separately (as it is usually the case in the literature) are shown in Table
3.5. It is seen that the total unavailability is greater than the sum of
the unavailabilities from the independent calculations. This is due to failures
in the integrated system, which are missed in the separate calculations, i.e.,
faillures due to weak points resulting from the interconnection of the
subsystems.

Bustl (Ref, 140) gives an overall view of the problems which arise when
reliability techniqu;s are applied on nuclear power plants at the component,
equipment and system level. Specific examples include the actuator command
unit which controls a motor valve and the emergéncy power supply to the ECCS.

Gangloff et al. (Ref. 141) outline a study of the unavailability of the

containment spray system of a PWR. Identification of the minimal cut sets
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TABLE 3.5 UNAVAILABILITIES OF THE SYSTEM DEMANDED TO CONTROL A LOCA.

ASSUMED PROBABILITY OF LOSS OF STATION POWER SUPPLY 0.1 (Ref, 139)

System Unavailability
Over-all Safety System 2,6 X 10‘-4
Mechanical System 0.39 x IO—4
Protection System 0.50 X% 10“4
Electrical Power Supply 0.39 x 10—4
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reveals that no single failure could result to system failure, The probability
of no spray is estimated to be 9.982 X lO==5 (per demand) and that of inadvertent
spray 9.70 X 10n7°

Erdmann, Okrent et al. (Ref. 142) study the loss of isolation between the
high and low pressure portions of the residual heat removal system of a BWR.
A simplified schematic of the system is shown in Fig. 3.19. The RHR system is
a low pressure system (400 psi) directly connected to the primary system which
is at higher pressure (1200 psi). Its objectives are to remove decay and
residual heat from the reactor so that refueling and servicing can be performed,
to supplement the spent fuel cooling system capacity when necessary to provide
additional cooling, to condense reactor steam so that decay and residual heat
may be removed if the main condenser is unavailable following a reactor scram
and it forms an essential part of the low—pressure core flooding system which
is part of the ECCS. In Fig. 3.19 the valves shown in black are normally
closed., Failure of isolation can occur if the following groups of valves fail.

{Fo19, F022, F023}, {F050, FO1l5},

{F009, FOO18, FOO06B or FOO6A} .

A fault tree was built to analyze the event '"Loss of isolation on leg 1"
and it is shown in Fig. 3.20. Seven schemes were analyzed as follows:
Scheme 1: F019 and F022 are required to function properly while F023
is non-existent (i.e., open). Only failure data from nuclear experience are
used.
Scheme 2: Valve F019 is not included and again nuclear data is used.
Scheme 3: The original design is considered with all available data.
Scheme 4: The pressure interlock on valve F022 is removed and nuclear

data is used.
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Scheme 5: Identical to Scheme 3 but only nuclear data is used.

Scheme 6: Slip clutches are added to valves F022 and F023, nuclear data
is used.

Scheme 7: Identical to Scheme 6, but the slip clutches are replaced by
limited torque motors.

The failure rates are shown on Table 3,6. AZO means that 20% of the data

are smaller than the selected values, Similarly for ABO’ The logarithmic

mean A is calculated from

1
In A = E‘ (ln )\20'1‘ In }\80) o

The fixed—time—to-repair model was employed with T=3 months. Since the study
is for one year, no repair is equivalent to setting T = 12 months. The tree
was solved with the aid of the code EKKFA (Ref. 143) which is a modification
of the PREP and KITT codes.
The critical minimal cut sets for Scheme 3 were found to be:
1. random failure of valves F019, F022 and F023,
2. random failure of valve F019 and inadvertent opening by either
the operator or the automatic control system of valves F022 and F023,
3. random failure of valves F019 and F022 and pipe failure outside the
primary containment between the F022 and F023 valves.,
The results for the various schemes are shown on Table 3.7.
3.A.8 Event Trees
The event (or flow, or accident—process) tree is a logic diagram similar
to the fault tree with one fundamental difference: the logic is inductive,
i.e. starting from an initiating event the tree proceeds to uncover its con=-
144

sequences. It is similar to the decision tree of decision analysis, in

safety studies, however, the event trees do not, as a rule, include any decisions.
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TABLE 3.6 FAILURE RATES

FOR THE FAULT TREE OF

FIG. 3.20 (Ref. 142)

Nuclear Data All Data
20 A Ag0 20 Ag0

Automatic Control System-Spurious -8 -7 _7 -7 -7 -6
or Improper Signal 6.7 x 10 1.1 % 10 2,1 x 10 2,0 x 10 v3 x 10 1.6 © 10
Clutches 7.0x 108 2.5%x1077 o0.9x10% 7.0x10® 2.8x10® 1.1 x 1078
Contaminantg--Failure Event Due to
Contaminants - - - -= -= -
Circuit Breaker--High Current 10x10% 1.0x10°  1.0x10% 10x10% 4.8x10° 2.0x 1070
Design Error 2.0 x 107 2.4 x 1077 3.0x1077 2.0x1077 2.4 x1077 2.5 1077
Instrumentation _6 _5 -5 ~6 -5 -5
A) Detectors or Transducers 6.0 x 10 1.6 x 10 4,0 x 10 8.0 x 10 2,2 x 10 5.6 x 10
B) Recorders, Display Unita, etc. 2.5 x 1078 9.3x10®  35x107% 4.5%x10° 1.5x100° 5,2 %1070
Interlocks--Relay or Switch 5.0x 1077 3.0x10%  2.0x107° s.ox1077 3.0x10¢ 2.0x 107
Maintenance Errors
A} Installation - —_ - —-— —_— ~—
B) Modification - - —-— - - --
C) Operational or On-Line - - - - - -
D) General Nom-Specific 2,0x108 s5,1x10% 1.3x1077 2.0x10% 1.4x1077 8.0 x 107
operator. Brrors 5.0x1008 1.7x1077  s.8x 1077 s5.0x107® 1,7x1077 5.8 x 107

-11 ~10 -9 -11 -10 -9
Pipe Rupture—-Serious Leaks 2,0 ¥ 10 1.5 x 10 1.0 x 10 2.0 x 10 1,5 x 10 1.0 x 10
Power Failures -6 -6 5 s -6 -5
A) Primary 6.0 % 1078 8.2 x 10 1.1x100 6.0x10"% 8,2x10® 1.1x10
B) Standby 2,0x 1077 2.0x 1078 1.8x107° 2.0x 107 1.2x10° 7.0x 107"
C) Power Supplies (H.V. or L.V.) 3.0x 10 9.2x10®  2.8x107° 7.0x1077 1.2x107% 2.0 x 1074
Pump Failures - — - - -— -

-7 -7 -6 -7 -6 -5
Relay-~Low Current 1,0 x 10 3.0 x 10 1.0 x 10 1.9 x 10 1.7 x 10 1.6 x 10
Valve--Isolation or Throttle -3 -6 -5 -7 -6 -5
A) Mechanical 5.0 x 1077 2.5 x 10 1.1 x 1077 5.6 x 10 3.0x107% 1.5 x 10
B) Actuation s.0x 1077 2.5 x10%  1.0x107% s.8x 107 30x10% 1.2x107°
€) Mon-Specific Causes 8.0x 107 3.3x10°% L4 x10 1.0x 10 43 x10® 1.0 x 1070
Valve--Check 3.0x1077 1.3x10%  6.0x107® s.ox1077 2.5x 1076 1.2x 107

Valve--Safety
Valve--Relief
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TABLE 3.7 FAILURE PROBABILITIES FOR THE VARIOUS SCHEMES

OF THE FAULT TREE OF FIG. 3.20 (Ref. 142)

Description of Schemes Failure Probabilities per Year

Qg0 Q Q0

Modified Design (One Check and
One Isolation Valve)--Nuclear
Statistical Data Used

A) No Repair 2.0 x 10 1.4 x 10 1.0 x 10~
B) Repair 9.4 x 10 6.7 X 10 ° 4.6 X 10

Modified Design (No Check Valve)=--
Nuclear Statistical Data Used

X

A) No Repair 1.2 x 1073 1.2 x 1074 1.3 x 107°
B) Repair 3,1 x 1074 2.3 x 107 3.5 x 107°
Original Design--All Statistical

Data Used

A) No Repair 4.7 x 1073 5.8 x 107° 7.2 x 10"/
B) Repair 7.8 x 1074 1.0 x 107> 1.5 x 10~/
Modified Design (Pressure Inter-

lock on One Valve Only)--Nuclear

Statistical Data Used

A) No Repair 8.1 x 10° 2.0 x 1070 4,9 x 1078
B) Repair 1.9 x 107 4.6 x 107 1.1 x 1078
Original Design-~Nuclear Statis-

tical Data Used

A) No Repair 7.8 x 107> 1.8 x 108 4.2 x 1078
B) Repair 1.4 x 107° 3.3 x 107/ 8.1 x 1077
Modified Design (S1lip Clutches)--—

Nuclear Statistical Data Used

A) No Repair 1.3 % 107° 2.0 x 107 4.0 x 107/
B) Repair 1.5 x 10°° 3.0 x 1078 4.6 x 10710
Modified Design (Limited Torque

Motors)--Nuclear Statistical

Data Used

A) No Repair 1.0 x 10™° 1.6 x 10~/ 3.0 x 10™7
B) Repair 1.0 x 10°® 2.0 x 1078 4.0 x 10710
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The merits of event trees are similar to those of fault trees: they are
useful visual aids for understanding the consequences of an event, critical
chains of events can be readily identified and simple probabilistic calculations
can be performed.

Event trees are particularly useful in a probabilistic assessment of the
risk from a power plant. In contrast to the design basis accident approach,
where a maximum credible accident is postulated and the plant is designed to
limit its consequences under the assumption that all the relevant parameters
are unfavorable (worst case analysis), the current philosophy is not to
differentiate between credible and incredible accidents, but to assign prob-
abilities to all conceivable accidents and analyze their consequences via
event trees., In this manner some measure of risk can be established which can
be compared with the acceptable criteria. Details on this line of thought are
given in Refs. 145, 146 and 147.

The graphical representation of an event tree is much simpler than that
of fault trees, since no special symbols are used. Several examples will
illustrate the methodology.

Pugh (Ref. 148) discusses the application of event trees on reactor
systems (scientists of UKAEA usually call them fault diagrams or fault trees).
A typical event tree in simplified form is shown in Fig. 3.21. The author
proposes that for the initiating event in addition to its frequency of occur—
rence, the trip signals resulting from the detection of tge fault shcould be
identified for better coordination between the designer and the safety analyst,
On the left of the diagram the sequence of protective systems that will be
required is shown. The two branches of the tree which originate from each

unction correspon (¢] e WO mutua exclilusive events: e system unctions
i pond to the t tually lusi ts: "the system functions'
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CONTROL SYSTEM
4 11
GUARANTEED FEED SYSTEM |5 l12
6 13

FUEL SPRAY COOLING SYSTEMS l7 lg I14~ l15

Figure 3.21. Typical Event Tree {Ref. 143).




and "the system fails.," 1In an application the corresponding probabilities
(usually per demand) should be known. An additional convention of the author
is that branches on the left represent successful performance of the system,
Thus the sequences of events leading to the points 5,7,12 and 14 are considered
safe (the reactor is shut down and is sufficiently cooled). The points 8,9,
15,16 and 17 should be examined more carefully to assess the potential damage
(e.g., if the system reaches point 16 the reactor is shut down but the coolant
circuit pressure is not reduced thus a break of the circuit will occur). The
probability of the system state represented by each end-point can be found by
multiplication of the probabilities of occurrence of the events which lead to
that point. The author proceeds to apply the method to initiating events that
can occur in a heavy water reactor. Figure 3.22 shows two such applications
(the negative numbers at each end-point are the powers of ten which give the
probability of that state per year).

Doron and Albers (Ref. 149) use event trees to find the possible sequences
of events that may occur after a loss of coolant accident in a PWR. The tree
is shown on Fig., 3.23 with the annual frequency of each event and of each
branch leading to the end-points 1-22. The authors then give the estimated
activity released (in Curies) for each final state of the system along the
lines that Farmer proposed in Ref. 145, The next column in the figure shows
the product of the activity release times the frequency of the final state
(Curies/year) and can be used as a measure of the risk from the plant. As it
is shown on Figure 3.23 the most critical branches are 18 and 21,

The loss of coolant accident and the handling of related problems via

event trees in a BWR is the subject of Ref. 150,
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Figure 3.22. Applications of Event Trees {Ref. 148).
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Figure 3.23. Event Tree for a Loss of Coolant Accident of a PWR (Ref. 149).
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3.A.9 Qualitative Methods

The methods discussed here are qualitative and inductive in nature and
they form an integral part of a safety analysis, They usually precede a
fault tree study and their conclusions are of great help in the construction
of the fault tree. A survey of the various methods is done by Balfanz in
Ref. 151.

Although different names are given to these methods one could simply say
that they are the natural approach an analyst with common sense would take in
order to understand the system and its safety aspects. Thus the preliminary
hazard analysis identifies the sources of energy which should be under control,
like pressure tanks, fuels, etc.; the operational hazard analysis examines
the functions and safety of the personnel employed in the plant, and so on.

Among the qualitative methods the one that finds extensive use is the
failure modes and effects analysis (FMEA). As the name suggests, the analysis
identifies the failure modes of the components of the system (all or the ones
that are judged to be critical) and the effects that these may have upon the
subsystem to which the component belongs and the system as a whole. For a
systematic FMEA blank forms are provided on which as much information about
the component is reported as it is deemed necessary and, of course, possible,
As an example of FMEA Table 3.8 shows an application on a hané valve (Ref. 151).
This is only one possible form and depending on the specific system under
study additional columns can be used to enhance the amount of information given
(like effect on personnel, corrective actions etc.). It is clear then how
useful the FMEA can be, if done at the right time, in suggesting design modifi-

cations and in helping to build a fault tree for an unfavorable event.
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TABLE 3.8 FAILURE MODES AND EFFECTS ANALYSIS OF A HAND VALVE (Ref. 151)

inintentionally

lock due to
broken valve
cone

pressure medium

Name of Operating | Failure Mode Failure Failure Repair | Effects on Input | Effects on System
Structural | State Cauge rate Time and Output of
Part (he-1y (hr) Structural Part
Valve Closed Opens incompletely Breakage of 0.5 x .10_6 8 Complete failure | No pressure in
15 unintentionally valve drive of lock system
Opens partially Leakage in 3 x 10_6 24 Slight internal Pressure drop in system,
unintentionally valve aesat leakage follow up feed through
regulation
Does not open Valve drive 3 x 10_6 24 Chocking effect Delayed pressure relief
completely sluggish due to valve in system
(rusted)
Doeg not open Blockage 5 x 10'6 8 No preasure no pressure relief in
of drive relief via valve system
or motor
defective
Open Clgses completely Sectional 0.8 x 10-'6 8 Blockage of Impermissible presaure

build up in system
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Some quantitative results can be determined from the FMEA showing the
probability of occurrence of each failure mode and thus ranking them according

to their importance. Details on this approach (eriticality analysis) may be

found in Ref. 152.
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3.8, COMMON MODE FAILURES

A fundamental assumption of the fault tree analysis is that the failures
of the primary components are random independent events which are described
by exponential distributions. Some dependencies among redundant components
may be predicted by changing the failure rates of the working components when
some failures have occurred, but still the phenomenon is of random nature. A
survey of the analyses performed on real systems and subsystems reveals that
the degree of safety achieved against these random failures is acceptable.
The reason behind this is that highly redundant systems are employed to per-
form a certain function.

However a system is not subject to random failures only but also to a
different type of failures, called common mode failures, for which the methods
we have presented are not applicable, Failure of many components due to a
single cause is classified as a common mode failure. The problem is quite
vague and general as stated in this definition and quantitative methods for
handling it are lacking; the approach taken by safety analysts is qualitative
and it is concerned with the classification of the various types of common
mode failures into broad categories and based on this preventative measures
are suggested (Refs. 153, 154 and 155). These categories are related to the
cause of such a failure as follows:

1. Functional Deficiency.

The instrumentation used to monitor a certain variable is not appropriate
for the intended use and it provides with wrong information. The conditions
under which a system is supposed to operate are not well understood or they

change unpredictably thus rendering the system inadequate. This type of a

failure clearly has nothing to do with failure of the hardware itself and is
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of systematic type in complete contrast to the random component failures which
are usually encountered in reliability analyses,

2. Design Deficlency

Similar components have not been designed or manufactured properly.
Equipments or subsystems thought to function independently actually have a
common element failure of which can cause a common mode failure,

3. Maintainance Error

This category includes all errors that human operators may make regarding
testing, repair, calibration and operation of the equipments of a system,

4, External Environment

Failures can be iInduced by fires, explosions, floods, earthquakes,
tornados and other major external events. In addition other causes less
dramatic but of importance may be unfavorable changes in the operating environ-
ment, such as accumulation of dirt and/or dust, high temperatures, humidity,
vibration, etc. '

The recommended measures against common mode failures are maturally
based on different forms of diversity. The most important one which offers
defense for all the previous categories 1s functional diversity by which more
than one plant parameters are monitored to warn that an unfavorable situation
is developing. Functional diversity should be combined with operational
administrative diversity (more than one person should independently do and
review personnel actions), equipment diversity (equipments of different types
should be used to perform a certain function), physical diversity (redundant
components should be physically separated) and design administrative diversity
(reviews of the design and construction procedures). Although it is clear that

such general recommendations are useful in reducing the probability of common

mode failures, they are far from the quantitative methods of estimating
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probabilities of failure due to random causes and the improvement of reliability
due to redundancy, testing, etc.

A more systematic way of investigating common mode failures is described
by Gangloff and Franke (Ref. 155) and Gangloff (Ref. 156). Fault trees (or
other methods) are utilized to identify the combinations of events that can
cause system failure (i.e., the minimal cut sets). From this information and
the previous classification a table is built of the possible common mode fail-
ures of the system. Then the preventative measures are identified and each
possible common mode failure is examined in detail to check whether it can be
safely assumed that its likelihood of occurrence is very small. The method is
of course, qualitative. Table 3.9 shows the format used to identify the common
mode failures for a reactor protection system.

Epler (Ref, 157) uses the data on common mode failures that occurred at
Oak Ridge National Laboratory to produce some numerical results and then make
comparisons with random failures. The failures are described on Table 3.10.

In addition to their causes the failures are also classified according to their
rate of occurrence (instantaneous failures are those which occur so quickly
that the operator does not have time to discover them and take the necessary
steps to limit them). A further classification is with regard to whether the
common mode failure was actually completed. The table shows that only 3 fail-
ures were completed while 7 were arrested in progress, result which verifies
the usefulness of the preventative measures. Epler proceeds to estimate the
rate of occurrence of common mode failures by estimating that the total number
of subsystem years is 300 and with 3 failures having occurred the rate is 0.0l
per subsystem year. To make comparisons with random failures it is assumed
that the protection channels fail at a rate of 0.1 per year (random failures)

and that the test interval is 0.1 year, The probability that a common mode
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TABLE 3.9 POSSIBLE COMMON MODE FAILURES IN A REACTOR

PROTECTION SYSTEM (Ref. 155)

EXTERNAL NORMAL | DESIGN | OPERATION AND EXTERNAL | FUNCTIONAL
ENVIRONMENT DEFI- { MAINTENANCE PHENOMENA | DEFICIENCY
CIENCY | ERRORS
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o
[S3] [
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B [
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ul & z2 <,
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OPEN CIRCUIT ON SIGNAL
TRIP RELAYS
(BFD INDUSTRIAL CONTROL RELAY) XX XX X|x X X XX X
FAIL TO OPEN CIRCUIT ON SIGNAL
LOGIC RELAYS
(BF INDUSTRIAL CONTROL RELAYS) ) x| x}x x| x X X XX X
FAIL TO OPEN CIRCUIT ON SIGNAL
ANALOG CHANNELS
(DIVERSE EQUIPMENT) FAIL TO x| x| x XUx{x Ixi x| x|[x{x[x{x X{x X X
REMOVE POWER TO RELAY COILS
PERMISSIVE FUNCTIONS
(RELAYS AND SWITCHES) BYPASS x| x| x| x x| x| x|x) x| x[x{x|{x]|x x| x X X
ACTION OF LOGIC RELAYS
INTERCONNECTING WIRING
SHORTS EQUIVALENT TO ABOVE X[ x X|X[X[X
FAULTS
TEST CIRCUITRY
BLOCK SIGNALS TO LOGIC x{x[x x| x
OR TEST RELAYS

NOTE: X IN BLOCK INDICATES POTENTIAL FOR COMMON~-MODE FAILURE.
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TABLE 3.10. COMMON MODE FATLURE EXPERIENCE AT ORNL (Ref. 157)

Class of Eovironmental Rate of
Ttem Reactor failure factor Propagation Description of faflure; remarks
1 Tower Shielding Actual to Pisabled by Instantaneous The reactor was suspended between two towers by a cable from each in such a
Reactor (TSR} completion accident vay that the severance of either cable would drop the reactor. Dropping the
teactor or pulling a tower down by the cable hoist would be the maximum
credible accident., Redundant switches were fnstalled en a single bar to )
detect slack cable at the hoist. However, when one cable became slack, it
struck awav the bar and incapacitated the switches. Subsequently the cable
wag cut hy the gears but was sufficiently fouled that it held. The hotst
‘house was unshielded and hence uroccupied, so it was not until the following
tnspection that the condition was discovered.

2 0ak Ridge Graphite Actusl to Comaunication Instantaneous In a test of the thermopile protection channels, all other protection chan-
Reactor {X-10) completion error nels were bvpassed, and then all rods were withdrawn, The slowly responding

thermopiles terminated the excurgion at about 30N rated power,

3 Aberdeen Pulse Actual to Disabled by Tnstantaneoua When the reactor was pulsed during a test program at ORNL, the high loniza-
Reactor (APR)* completion accident tion current destroyed the ffeld-effect transistors in the flux amplifiers,

These same amplifiers had heen used {n the High Flux Isotope Reactor and

the Molten Salt Reactor Fxperiment, where protectiun response vould have

been fast enough to prevent the high current. A system with slower response )
would not have prevented the high current and would have allowed transistor

failure, Protective diodes installed as a remedy must be tested periodically,

In another installation, trouble developed from electrical-nofse plckup vhich,

1t was found, could easily be remedied hy removing the protective diodes, It

now develops that the original field-effect transistors are no longer being

manufactured and pubatitutes must be found for all existing amplifiers at all

locations, with the overload problem heing kept {n mind.

4 Oak Ridge Research Arregted in  Change of char- Instantaneous Phyalcists flooded heam holes in accordance with procedures. This cut off the
Reactor (ORR) progresa acteristics neutron beam and ahielded the ndjacent neutran detectors.

5 Low Intensity Test Arrested in  Unrecognized Slow The fonization chambers vere purged continuously with gas from a cormon bottle,

progregs comman element Contaminated gas caused most chambers to fall.

[ Lov Intensity Test Arrested in  Change of char- Slow The temperatures at the fonization chamhbers were originally below 50°C. After
Reactor (LITR) progress acteristics 10 years of operation, the temperatures rose to 100°C adn caused some of the )

chambers to fail,

7 Homogeneous Reactor Arrested in Unrecognized Instantaneous A steel housing was erected which enclosed a number of pneumatic devices. All
Experiment No. 1 progresa capmon element affected instruments followed the pressure variations vithin the enclosure
(HRE-1) inatead of the atmospheric pressure,

8 Molten Salt Reactor Arrested in  Unrecognized Instantaneous Two d-c electric power supplies provided power of opposita polarities with
Experiment (MSRE) progress common element respect to ground for a group of instruments used for pratection and control,

The positive voltage load was fall-safe, but It was discovered that less of
power to the negative voltage load was an unsafe faflure,

9 Bulk Shielding Arregted in  linrecognized Instantaneous  All preamplifiera for protection and control were mounted on a single strue-
Reactor (BSR-1) progreas comon element tural-steel member, During plant alterations it became necespary to unbolt

the steel member and jerry-rig a support. The support sagged, strained the
coaxial cables, and pulled loose the center conductors. Centinucus monitoring
detected the fault. )

10 High Flux Isotope Arrested in Unrecognized Instantaneous It was necessary that the one rod with the greatest reactivity worth be stopped

Reactor (HFIR) progregs common element reliably. Redundant relays were provided to ensure reliabllifty., OCriginally
the two-phase motor stopped satisfactorily; hovever, when an improved power
source vas installed, the motor refused to stop when required, This failure
was discovered on a perlodic test,

11 Low Intensity Test Potential Unrecognized 1nstantaneous A single desiceant system served dry air to all coaxial cables for protection
Reactor (ORR) corrected comman element and control. These cables were under water, and a single leak could lower

the signal level from all {onization chambers.
12 Low Intensity Test Patential, Change in char- Indeterminate The neoprene gasket between tank sections was embrittled by many vears of
Reactor (LITR) corrected acteristice radiation damage. A leak could wet the shielding material and cause neutron
attenuation at the fonization chambers. The flux controller could raise che
power, but the protection chambers would not indicate the power {ncrease.
The aingle-temperature channel would appear to be reading high {ncorrectly. )

13 0ak Ridge Research Porential, Unrecognfzed Instantaneoua A single electromechanical switch in the control system, which was never tested, !
Reactor (ORR) corrected common element on loss of has the capability, upon fts failure, to defeat the low-flow protection system.

flow

14 Oak Ridge Research Potential Corrsunication Indetermivate In an effort to fwprove maintenance pra~edures, (nstrument settings were tvped
Reactor (ORR) corrected error and pasted near the relsted insr-urents, It was discovered that the typist

had made an error and all fdrr:i{cal i{nstruments vould have been incorrectly
set,

%
The accident occurred during a teat at ORNL, not at the Facility at Aherdeen.
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failure will occur between two tests and for any number of channels is

0.01 x 0.1 = 102,

When random failures are considered the number of redundant
channels is important, thus for one channel the probability of failure between
two tests 1s 0.1 x 0.1 = 10-=2 and for a two-out-of-three logic scheme this
probability is approximately 10_4. It 1s seen that the probability of a
common mode failure is 10 times larger and reliability calculations of random
failures alone are not sufficient to demonstrate the safety of a system.
Similar rough calculations of the rate of occurrence of common mode
failures in PWR's and BWR's were made by Williams (Ref. 153). Failures were
reported and classified for the years 1969 and 1970 for both systems. It was
found that in this period the common mode failures were 177 of the total number
of failures for PWR systems and 257 for BWR systems. The main cause of such
failures was identified to be human error for PWR's while for BWR's over half
of the common mode failures were due to design deficiency. The rates of
occurrence of these failures were estimated to be 1,67 per reactor year in
PWR's and 2.24 per reactor year in BWR's, however, it should not be inferred
that the rate of occurrence of common mode failures in BWR's is consistently
higher for any year, since the data used for such calculations were not stat-

istically significant.
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3.C. HUMAN FACTORS AND SOFTWARE RELIABILITY

The effect that a human error can have on the safety of a system was
discussed in the preceding section with regard to common mode failures.,
Operator errors were also included as events in the fault trees of Fig, 3.11
("operator fails to notice the light") and Fig. 3.20 (''operator opens valve');
these events can be parts of minimal cut sets leading to the top event and the
quantitative analysis of the trees requires that probability values be assigned
to them.

The field of human factors has been studied extensively and its main task
is the prevention of accidents; one of the qualitative methods of Sec. 3.A.9
dealt with personnel safety. However, the problem encountered here is of dif-
ferent nature since it is concerned with man~machine interactions and their
quantitative description. The various aspects of the problem are discussed in
Refs. 158, 159, and 160. The report by Garrick, Gekler, et al. (Ref. 161) is
particularly relevant to the present discussion.

Human error can occur during testing, inspection, repair and operation.
In most of the cases the system under study is automatic (e.g. reactor protec-
tion systems) and operational errors are not important., As it is to be
expected, the probability of a human error increases as the number of functions
that the operator is required to perform increases and as the time available
decreases. Again the problem of good data arises; usually the available data
come from laboratory experiments and not from actual situations buu they do
give a feeling of the order of magnitude of the probabilities. In Ref. 161,
tables are provided which list several error rates for specific tasks (they
have been compiled from other references listed in the report). 1In Table 3.11
we reproduce some of the data regarding the probability that a display will be

read correctly or that a control device will be operated correctly. Table 3.12
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TABLE 3.11 HUMAN RELTABILITY IN OPERATION OF

CONTROLS AND DISPLAYS (Ref. 161)

Neice and Parameter Reliah{liry
Lounters

Size (length), inches:

1 0.9990
1l to 2 0,9998
3 and wp 0.9995

Number of Drums or Digices:

1to 3 0.9997
4 to S 0.9993
7 and up 0,9985
Lights
Diameter, inches:
Less than 1/4 0.9995
1/4 to 1/2 G.9997
1/2 to 1 0,9999
Number of lights on!
1 or 2 0.9998
3 or 4 0.9975
5 to 7 0,9952
8 to 10 0.9945
Presentation
Intermittent (hlinking) 0.9998
continuous 0,9996
FPush Buttons
Size:
miniature 0.9990
1/2 inch or more 0,9999
Number of push buttons in a group
A, Single column or row
1 ta5 0.9997
6 to 10 00,9995
11 to 25 0,9990
B. Douhle column or row
or rows and column
1 to 0.9997
6 to 10 0.9995
11 to 25 0.9990
C. Matrix
6 to 10 0,9995
'l to 25 0.9495
15 ar more 0.9985
Numher of push buttons within group:
2 0,9995
4 0.9991
8 0.9965
Distance between wdges, inches:
1/8 to 1/4 0.9985
3/8 to 1/2 0.9993
1/2 or more 0.9998
Detent!
present {1,9998
absent (switch returns) 0.9993
Communicating
Speaking, 0.9998
Writing 0.9998
Recognition 0.9992
Decision Making 0,9992
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TABLE 3.12., HUMAN RELIABILITY IN THE PERFORMANCE

OF VARIOUS TASKS (Ref. 161)

Estimated
Task Element Reliability
Position multiple position 0.9957
electrical switch
Install gasket 0.9962
Inspect for dents, cracks and scratches 0.9967
Tighten nuts, bolts and plugs 0.9970
Connect electrical cable (threaded) 0.9972
Inspect for air bubles (leak check) 0.9974
close hand valves 0.9983
Open hand valves 0.9985
Remove nuts, plugs and bolts 0.9988
Verify light illuminated or out 0.9996
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shows the reliability per operation for certain tasks. If the failure rate A
is needed, we can calculate 1t by estimating the average time t required for
the task and then divide the unreliability by t. In general, the error
probability per operatlon lies 1n the interval 10_2 to 10“4.

On a more theoretical level, we mention the work of Regulinskil and
Askren (Ref. 162). They conducted experiments involving continuous tasks and
analyzed statistically the results. The conclusion was that the Weibull,
gamma and log-normal distributions were reasonable models for the distributions
of times—foLhuman failure, while the normal and exponential distributions were
rejected.

All the models and methodologies presented thus far referred to the
hardware of the system (human factors were also introduced in relation to their
influence on the hardware). It has been recognized, however, that the reliabil-
ity of the software should also be examined, since failures may emanate from it.
Schick and Wolverton (Ref. 163) provide with the following definition: ''Soft-
ware reliability is defined to be the probability that the applications program,
together with i1ts operating system, data base, and computing environment, will
perform its intended functions at the time when those functions are needed by
the customer.'.

Mathematical models dealing with the problem do not exist, although some
attempts for quantification have been made. Investigations in the past have
been mainly qualitative. 1In Ref. 164 the types of software errors are defined
as deficiencies in fidelity, veracity and viability, where fidelity is the
accuracy of mechanization of an algorithm for a given operating and hardware
system, veracity is the adequacy of representation of a real problem by a
given algorithm, and viability is the adequacy with which timing constraints
are met by the mechanization of algorithm. This discussion concerns large

programs which cannot be tested exhaustively so that all errors are discovered

279



and removed. The number of errors expected depends on the phase in which the
program is: in the design and development phase (design of algorithm,
preparation of flowcharts, subroutines, assembly of the program) large numbers
of errors occur, but are not of interest to reliability analysts, since the
program has not reached the user yet. When this happens, we can define a
failure rate as usual which follows roughly the bath-tub curve (Ref, 165), that
is, there is an initial phase (debugging time) where many errors are discovered
and corrected and a subsequent period (useful life) where random errors occur,
which are attributed by Williamson, et al., (Ref., 165) to inputs which cause
out-of-tolerance outputs. The last part of the bath-tub curve (increasing
failure rate) corresponds to the wear-out of components; computer programs,
of course, do not wear-out, but we can say that by that time the algorithm is
obsolete and must be replaced by a new one. If this modeling of the failure
rate is accepted, standard reliability techniques can be applied to estimate
sof tware reliability, as it is done in Refs. 164 and 165.

The use of computers in reactor protection systems and the associated
problems of hardware and software reliability is discussed by Hoermann in
Ref. 166. Computerized functions include reactor scram, actuation of main
steam, penetration and relief valves, turbine shut down and monitoring of
temperature and coolant flow in the subassemblies of a breeder reactor (subject
studied in detail in Ref. 112). An example of such a function involves a two-
out-of-three protection system (Fig. 3.24). As shown in the figure there are
two possibilities: 1in Fig. 3.24.b each computer receives only one 3ignal and
the majority voting 1s accomplished by interconnecting the computers, while in
Fig. 3.24.c all three input signals are feeded into each computer, which
operates independent of the others. The author proceeds to stress the need for
both hardware and software reliability analyses of such systems. The discussion
is qualitative and deals with the necessary actions that insure high software

reliability (useful references in this context are 167 and 168).
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3.D. ANALYSES WITHOUT LOGIC DIAGRAMS

3.D.1 Introduction

The methods which have been presented in the preceding sections are the
fundamental tools which enable one to study the safety of systems. The ques-
tion as to which method 1s appropriate for a specific problem can be answered
by looking at the available information. We recall that the general problem
posed in quantitative safety studies is the evaluation of the probability that
a specified event will occur in a period of time or that a specified function
will be performed satisfactorily over a period of time or per demand. Then
we can distinguish two cases:

i. The simplest case occurs when past experience from identical or basically
similar situations as the one under investigation make it possible to calculate
the required probabilities by statistical methods. The calculation may be non~
parametric or a distribution function may be applicable, in which case its
parameters are estimated from the data. Some simple probability laws may be
used (e.g. the conditional probability theorem) in order to facilitate the
calculations, but the procedure is essentially straightforward.

11. This case is considerably more complex. It concerns studies involving
multicomponent systems for which statistical data is lacking. Many factors
influence the behavior of the system besides the failure properties of its
parts,wlike inspection, maintenance, human operators, etc. In this case one
exploits the hierarchical structure of the system to analyze it into simpler
systems for which statistical failure data is available and the influence of
maintenance can be incorporated in the calculation. Of course, logic diagrams
are employed as well as qualitative methods for better understanding of the

gystem.
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In this section we focus our attention upon applications which do not
require the use of logic diagrams. Of course, the methods themselves are not
new,

3.D.2 Markov Models

The mathematics of Markov processes was presented in detail in Sectlons
2.D.4 and 2,D.5. It will be recalled that all the mutually exclusive states
of the system must be enumerated and statistically significant data should be
available for the estimation of the entries of the transition rate matrix.

The number of states creates a problem, since it increases very rapidly with
the complexity of the system; even in simple situations numerical methods are
required to solve the Markov system of equations (Eq. 2.212).

Applications of Markov processes to power systems (transmission, distribu-
tion, bulk power supply systems) are discussed in Ref. 169.

Billinton and Lee (Ref. 170) present an application of the method to the
reliability of the pumps of the heat transport system of a generating station.
The station contains four 750 MW units and the heat transport system of each
contains four 8,000 hp pumps. The pump configuration for each unit is assumed
to operate independent of the configurations of the other units. This assump-
tion enables one to study each unit separately with the advantage of fewer
states in the Markov model; independence cannot be assumed if spare pumps are
available for the whole station.

Each unit operates at full power when all four pumps are working and at
75% of power if one pump fails; failure of two or more pumps results to a shut-
down of the unit. Fig. 3.25 shows the state space diagram for this case,
Notice that in addition to the usual failure and repair rates (A and ﬂ) a third

rate is also used, the rate of installation of a repaired unit v.
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2 FAILED 2u 1 FAILED
PUMPS PUMP
Figure 3.25, States and Transition Rates of One Generating Unit With

Four Pumps. (Ref 170)
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From the dlagram we see that the transition rate matrix is

1 2 3 4 5 6 States
=4 4 0 0 0 0 1
0 = (3A+1) U 3 0 0 2
Y 0 - (3A+Y) 0 3\ 0 3
4o {aij} i 0 0 0 -2 21 0 4
0 Y 0 0 = (u+y) u 5
0 0 2y 0 0 -2y 6
The steady-state probability vector [ = (Hl,...,H6) is calculated by solving
the system
TA=0
6 (3.87)
Egi mo=1

Using the values A = 0.6 yr‘l, U = 35.04 yr‘l and Yy = 292 yr"l the numerical
results on Table 3.13 are derived. The probability of the unit working at full
power is Hl and at 75% of the power is H2 + H3. The frequency fi of a state j

per year is calculated from

i (3.88)

fi = Z:aij I
J
and the average fraction of the year spent in state i 1s calculated from

Hi :
T. =:—E— (3.89)
S
Since a pump itself 1s an item that is quite complex and can have a number
of failure modes an improvement of the above model can be achieved by consider-
ing two types of failure: 1 — permanent failures which require actual removal
of the pump and installation after repair, and 2 — temporary failures which

can be repaired in a short time at the actual location of the pump. Assuming
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TABLE 3.13. NUMERICAL RESULTS FOR THE MARKOV MODEL OF FIG. 3.25 (Ref. 170)

STATE VALUES CAPACITY VALUES
State Probability Frequency Average duration Capacity Probability Frequency  Average duratiom
(per vear) (year) (per vear) {year)

1 0.9268535 2.2244485 0.4166667 100% 0.9268535 2.2244485 0.4166667
2 0.0634831  2.3387181 0.0271444 757% 0.0711011  2.3524304 0.0302245
3 0.0076180 2.2381608 0.0034037 0% 0.0020454  0.1279820 0.0159817
4 0.0016306  0.1142696 0.0142694

5 0.0003913 0.1279820 0.0030577

6 0.0000235 0.0137124 0.0017123




that the temporary failure and repair rates are A' = 0.6 yr‘-1 and u' = 584 yr“1

the state space diagram i1s shown on Fig. 3.26, where now there are ten possible
states. The diagram has been drawn on three planes to facilitate reading

The authors proceed to study the effect of stand-by pumps on the avail-
ability of each unit and the problems that arise with regard to the number of
states when all four generating units of the station must be investigated.'

Another application of Markov processes can be found in Ref. 171, where
the reliability of the control rod drive system of a nuclear reactor (Otto
Hahn nuclear ship) is investigated. Twenty system states are identified and
the solution of the Markov system is carried out numerically with a program
based on the Runge-Kutta method.

A fundaﬁental assumption of Markov models is the constancy of the transi-
tion rates, which implies exponential distributions for the times spent by the
system in each state. The field data, however, indicate in many situations
that this assumption is not true. Di Marco (Ref. 90) and Patton (Ref. 172)
study the reliability of generators and they point out that the available data
suggest that the Weibull distribution is more appropriate to use than the
exponential. In this case the results of Sec. 2.D.6 for non-Markovian systems
apply.

3.D.3 Natural Phenomena

An important application of probabilistic models is in the study of
natural phenomena (earthquakes, tornadoes etc.). The lack of real physical
understanding of the natural processes which lead to such phenomena make it
necessary to use the available statistical data in order to make predictionms,
even though many serious problems arise regarding the validity of the data and
the models employed. Usually a distribution function is selected based on the

knowledge we have about the nature of the phenomenon and its parameters are
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estimated from the data. Table 3.14 is extracted from Ref. 173 and shows
several applications of this approach and the corresponding references. Some
theoretical aspects of probabilistic modeling of natural events are also exam=—
ined by Hewitt in Ref. 173.

The first qugstion is how the events occur in time; to answer 1t we use
either a discrete distribution for the number of events occurring in a period
of time or a continuous distribution for the time between successive events.
Frequently a second random variable is associated with each event (e.g. the
magnitude of an earthquake) and another continuous distribution is required
to describe it. Two different approaches are possible in this case: either
we use two distributions, as described above, one for the time occurrence and
one for the magnitude, the latter being a conditional distribution in the
sense that it gives the probability of the magnitude being in a certain inter-
val given that an event has occurred, or we use one distribution which gives
the probability of the largest or smallest magnitude over a period of time
being in a certain interval.

The discrete distribution which 1s used widely in natural phenomena is the
Poisson: if the average number of events per unit time is A, then in the

interval (0,t) the probability of k events is

(3.90)

k
pl = et L8

Basic assumptions for this distribution to be appropriate are: 1 — the
characteristics of the phenomenon should be constant over the period of
interest and 2 — non-overlapping time intervals are stochastically independent,
that is, the number of events in an interval is not related with that in any
other interval. Epstein and Lomnitz (Ref. 40) have used this distribution as
a model of earthquake occurrence. The inter-arrival times are, of course,

exponentially distributed, i.e.
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TABLE 3.14 EXAMPLES OF NATURAL PHENOMENA DESCRIBED BY
PROBABILITY DISTRIBUTIONS (Ref. 173)

Poisson Distribution

1.

Meteorite atrikes on (potential)
human targets

Megative Binomial
Frequency of tornadoes
Gamma Distribution

Sea wavea: height

River levels: recurrence
of exceedances

Precipitation: drought
occurrence

Exponential Distribution

River levels

Rayleigh and Weibull Distribution

Wind Speed

Wave heighta: trough-to-crest,

Lognormal Distribution

Tsunamis

Hydrologic Series (various examples)

Tornadoes: dimension of damage Swath

Flood damage magnitude: USA

Earthquakes: magnitude and frequency
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F(t) = 1 - e AE (3.91)

is the probability that one or more events occur in (0,t) and

R(t) = e (3.92)
is the probability of no events in (0,t). If we are interested in the dis-
tribution of the interval of time in which a specified number k of events
occur, we must take the convolution of k exponentials, which leads to the

gamma distribution (see Sects. 2.A.6 and 2.B.2), i.e.,

k-1 T
F(t) =1- 2. —@-E—?-— et . k=1,2,... (3.93)
r=0 ’

A serious objection against the Poisson model is the requirement of inde-
pendence of events. This is an idealization of the real world, since it is
known that phenomena like earthquakes, tornadoes, floods tend to occur in
clusters (in Ref. 26 this fact is pointed out for earthquakes). This problem
of contagion (i.e. the occurrence of an event increases the probability of
occurrence of another, a typical example being a contagious disease) has been
studied and the usual approach is to modify the standard distributions to
allow for the clustering (Refs. 173 and 174). TFor example, the Polya process
is such a modification of a Poisson process (see also Feller, Ref. 1). Before
using such models, however, it must be determined from the physical processes
that occur, that indeed clustering is due to contagion and not to other
reasons, such as uneven observations.

Having determined the distribution of the events in time the distribution
of magnitudes should be found. Magnitude is treated as an independent random
variable and it is, in most cases, continuous., Which distribution should be
used is again determined from physical considerations and the available data.
Thus, for earthquakes the distribution of magnitudes which is proposed in

Ref. 40 is the exponential, i.e.
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Hm) = 1 - e P8 (3.94)
which is interpreted as follows: given that an earthquake has occurred the
probabllity that its magnitude is less than m is H(m),

From the assumed independence between frequency and magnitude it follows
that, for example, the probability that n earthquakes will occur in (0,t) all

having magnitude less than m is

P[n, MSm] = p(n) [H(m)]n
= At 9—32 [1 - e‘B’ﬂn (3.95)

The probability that all the earthquakes in (0,t) will have magnitude less than

m is the sum of Eq. (3.95) over n, i.e.

oo

GMM < m) = IEO p(n) [H(m)]n
= exp [; Xte—Bm] (3.96)

which 1s the extreme value distribution for the largest value, as expected.

A further implication of the independence of magnitude and frequency is
that we can find the probability of exactly j earthquakes occurring in (0,t)
with magnitude greater than m., If n earthquakes occur, then the probability
that j of them have M > m is given by the binomial distribution

P [j EQ's with M > m/n EQ's occurred] = (TI) [l—H(m)]j [H(m):] n
3

The required probability is found by summing over n to allow for amny number of

earthquakes to have occurred, i.e.
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P[} EQ's with M > m] =

5, (0) L] o] g

n=0 \j

n-]j

]

el 0l 3 L

= e'A[1=H(m)]t'{A[l_H(m)]t}j
il

(3.97)

This result shows that earthquakes with magnitude greater than m follow the
Poisson distribution with rate

A(m) = A[1-H(m)] (3.98)

These calculations show how the frequency and magnitude distributions
can be combined to answer questions that may arise in applications. O0f course,
the exponential distribution is only one possible choice for the magnitude:
other distributions that have been used incude the Rayleigh (wind speeds), the
log-normal (tornadoes, floods), the Weibull (wind speeds), et al., (see Table
3.14 for references).

As stated earlier, the second approach to the magnitude-frequency problem
involves extreme value distributions. We no longer assume independence of
magnitude and frequency and their exact distributions need not be known.. The
most commonly applicable distribution is the Type I extreme value distribution

of largest values

F(m) = exp [—e—a(m_s)] ' (3.99)
which gives the probability that the maximum magnitude in a specified period of
time (usually a year) is less than m. Of course, Eqs. (3.96) and (3.99) are
alternative expressions of the same distribution; there are however fundamental
differences between the two, since Eq. (3.96) was derived from Eqs. (3.90) and

(3.94), while for (3.99) no specific form of the initial distribution was
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assumed (see also Sects. 2.A.6 and 2.B.2). This difference is reflected on
the interpretation of the parameters and the method of their estimation from
data.

The return period of the extremes of magnitude at least m is

1

T = Ty

years (3.100)

where F(m) is given by Eq. (3.99). Thus it takes an average T(m) number of
years for the annual maximum magnitude to be at least m once, If we wish to
find the return period of a certain magnitude and not of the annual maximum
we work with the parent population. From Egq. (3.98) we have that the number
of events with magnitude greater than m is (per unit time) A(m), therefore

the return period is

1
T'(m) = ST} (3.101)
or, using Eq. (3.94),
' 1 Bm .
T' (m) =T e units of time (3.102)

T(m) and T'(m) are different for small values of m but for larger values the
difference is insignificant (if m is large enough the population maximum and
the annual maximum are the same). Shakal and Willis (Ref. 26) found that for
earthquakes the two return periods are almost the same for values greater than
10 years. Besides earthquakes the extreme value distribution has been applied
to Ehe study of floods (Ref. 57), wind speeds (Ref. 175), etc. (see Gumbel,
Refs. 16 and 17).

Finally, with regard to the general problem of modeling natural phenomena,
Hewitt quotes Katti and Sly (Ref. 174) as follows:

"l. No single theoretical distribution has been found to describe
any large scale data.

294




2. For a number of data there could be two or more theoretical
distributions that fit equally well and there is no way to
choose between them based on fits alone.

3. Two or more physical models could lead to the same final
statistical distribution and hence the estimation of the
parameters of the distribution may not have unique meaning.

4, ... different methods of estimation lead to widely differing
estimates when the methods are consistent ... there are a
number of empirical frequencies to which the same theoretical
frequency function has been fitted by different consistents
methods..."

3.D.4 Various Probability Models

This section presents several examples of studies which show how simple
probability relations, statistical data and empirical relations can be used
to solve problems related to safety. Naturally, there is no general method-
ology which is universally applicable and each situation must be treéted
individually.

Four recent UCLA reports deal with probabilistic analysis of dam fail-
ures,176 airplane crashes,177 spills of toxic chemicals178 and meteorite
hazards.179 In the last report the probability (per year) that a reactor
will be directly hit or damaged by the heat generated by a near miss is cal-
culated. If AUS = 1.05 X lO14 ft2 is the area of the United States and AET
is some area indicating the effective target, then the probability that N(W)

meteorites with weight in some interval about W will damage the target is

N(W)

A
PW) = 1 - < - —A-E-?-> (3.103)
S

The area AET for a given reactor consists of the area Ai of the plant itself
plus the lethal area a(W) which is associated with each meteorite; this last
area is included to account for the effect of a near miss. From Fig. 3.27 it

follows that
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Figure 3.27. Comparison of Target Area and Affected Area for a Hypothetical Meteorite Crash;
Assume Meteorite Can Only Crash on Land. (Ref 179)




2
Agp = (JA—j_ + ,/a(W)> (3.104)

The number of meteorites in a certain weight range which hit the United States
per year and the associated a(W) is shown on Table 3.15. The historical data
are taken from Ref. 180. The vulnerable reactor area is estimated to be bet-

ween 104 ft2 and 105 ftz. The table shows the probabilities as calculated from

Eq. (3.103) and the potential damage. Since the first two weight ranges can-
not damage the reactor, the probability of such a damage is calculated by sum-

ming the third through the sixteenth terms of the fourth column. For Ai = 104

ft. this probability is 7 x 10_10 per year and for Ai = 105 ft2 it is 7 X 10~9
per year,

The important thing in such studies is to state clearly under what
assumptions this use of the historical data is valid. The present problem is
one of frequency-magnitude and it has been assumed that (a) the number of
meteorites that fall is constant in one year and equal to 3500, (b) meteorites
fall randomly throughout the surface of the earth; therefore, given that the

15 £ 2 14

area of the earth is 5.48 X 10 t” and that of the U.S. 1.05 x 10 ftz, we

can find the number of meteorites per year falling on the United States with a

simple calculation, i.e.

1.05 x lO14

5.48 x 1015

IR

3500 x 65

(c) the number of meteorites per year in a gilven weight range (as given on
Table 3.15) does not change with time;

A different treatment of data is done by Bush in Ref. 181, where the
probability of damage to critical plant components due to missiles from the
turbine is calculated. This probability, PA’ is given by the product of three

other probabilities, i.e.
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TABLE 3.15. PROBABILITY OF A STONE OR IRON METEORITE HITTING AND DAMAGING A NUCLEAR REACTOR IN THE

UNITED STATES (Ref. 179).

8617

W N(WD a(w) P

Range of Number of Potential Crash Probability of Will Meteorite Cause

Meteorite Meteorites In Area of Hitting One Damage to Contaimment

Weight Hit- Weight Interval Average Nuclear Reactor of a Nuclear Reactor?

ting Earth Per Year in Meteorite In United States (Assume a Direct Hit)

(Tons) United States 2 A.=104 ££2 A =107 £t
(£fto) i i

1/2 x 107 - 1073 45 2.5 x 107+ 3x107° 3x10°% o
1073 - 1072 12 2.1 x 10° 8 x 100 8x107°  very doubtful
1072 - 107t 6 1.8 x 10 4x1010 4 %1077 very possible
10—l - 10-.0 2 1.1 x 102 2 x 10—10 2 x 10—9 certain rupture of contalmment
100 - 10l 14 x 10_2 9.8 x 102 5 10_12 5% 10 1 certain rupture of containment
10! - 10% 2 x 1072 1.9 x 10° 551072 5 x 1079 serious damage

2 3 ~3 5 -11 ~11
10" - 10 6 x 10 1.6 x 10 1 x 10 3 x 10 destroy nuclear reactor

-4 - -
103 - lO4 13 x 10 1.1 x lO6 5 x 10 12 g x 10 12 destroy nuclear reactor
lO4 - lO5 2.1 x 10-4 5.9 x 106 4 x lO_12 5 x 10 12 destroy nuclear reactor
105 - lO6 5.9 x lO—5 5.9 x 107 2 x 10..12 2 x 10--12 destroy nuclear reactor and
nearby area

106 - 107 12 x 108 1.4 x 108 1x 10—11 1x 10_ll destroy nuclear reactor and

surrounding areas

107 - 108 2.6 x 10-6 6.7 x 108 1x 10ll 1x 10-11 destroy nuclear reactor and
large surrounding area

10% - 10° 4.6 x 1077 3.0 x 10° 8 x 102 §x102 v " "
1070 - 0™ 2.2 x 107° 6.7 x 100 7x1012 7x1072 v " "
10™t - 1012 4.6 x 107 3.0 x 10M1 1x10 1x107 : "
1002 - 1013 1.0 x 1077 1.4 x 1072 1x10 1x107th " "




P,=P, P, P (3.105)

where Pl = probability of turbine failure and ejection of an energetic missile
P2 = probability that such a missile strikes a critical component
P3 = probability that the component suffers a significant damage.

Pl is estimated from recorded turbine failures, which are shown on Table 3.16.
The operating experience covers approximately 70,000 turbine years. The
special feature of this historical record is that 1t cannot be assumed that
the population of turbines, from which it was constructed, is homogeneous,
because there has been an evolution in the design and manufacturing of the
turbines over the years. Bush attributes the failures to three general causes:
(a) metallurgical and/or design errors, (b) environmental effects, and (c) over-
speed. As an example, the first category includes failures by brittle fracture
due to retained oxygen and high nil-ductility temperatures; however, the pro-
cesses of melting and heat treatment of the materials have been modified, so
that such a failure is considered impossible now (the last one was recorded in
1956).

This continuous improvement of the quality of the turbines suggests that
the failure rate is a decreasing function of time. This is the subject of a
reliability-growth study (Refs. 25, 182); there are no standard rules indicat-
ing what model should be used and such a decision is largely a matter of judg-
ment. The fact that the failure rate decreases with time does not imply that
the bathtub curve is rejected. Referring to Fig. 3.28 we quote from Codier:182
"... the bathtub curve is all right if it is understood that it describes the
life-cycle behavior of a particular serial-numbered piece of hardware, but it

has to be understood that the bathtub can be made to move up and down as the

serial numbers change."
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TABLE 3.16. CUMULATIVE TURBINE EXPERIENCE (Ref. 181)

Year

Pre-1950

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

Plants
New Total
- 1037
99 1136
120 1256
108 1364
149 1513
191 1704
146 1850
127 1977
151 2128
193 2321
138 2459
146 2605
90 2695
105 2800
95 2895
111 3006
87 3093
97 3190
113 3303
103 3406
110 3516
91 3607
95 3702
126 3828

* B
Values L Turbine Years Synthesized in Case of E E Data

+ Overspeed, or out-of-phase, or generator failure

300

Turbine
*
Yr/Yr % Turbine Yrs
- 12,330 .

1087 13,417
1195 14,612
1310 15,922
1385 17,360
1609 18,969
1777 20,746
1914 22,660
2052 24,712
2225 26,937
2390 29,327
2532 31,859
2650 34,509
2748 37,257
2848 40,105
2950 43,055
3050 46,105
3132 49,237
3246 52,483
3355 55,838
3461 59,299
3561 62,860
3655 66,515
3765 70,280

TOTAL MISSILES
gh o
& o & &
5 38 5 54
v £3 N &3
5 S5 7 55
L:g? &, gz
1 1 1 1
1 2 0 1
3 5 2 3
1 6 0 3
1 7 14 4
1 8 14 5
1 9 1H 6
1110 11 7




FAILURE RATE

DESIGN-PRODUCTION LIFE CYCLE

Figure 3.28.

.

The Bathtub Curve and Reliability Growth. (Ref 182)
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In the present problem the model used was the Duane growth model.182

The cumulative failure rate AZ is
Ay == KHO (3.106)

where H: total test time (years)

F: number of observed failures during H

k: a constant

o: growth rate usually in the range 0.3 to 0.5
If the data are plotted on a log-log paper and a straight line is fitted, the
parameters k and o can be estimated, This is done in Fig. 3.29, where, in
addition, the current value of the failure rate is shown. This current or
instantaneous failure rate Ai is interpreted as the failure rate of the equip-
ments, if the reliability growth stopped at that time and it is calculated by
differentiating Eq. (3.106) with respect to H, i.e.

Ai = (l—u)%Z (3.107)

The current failure rate is approximately 10"4 failures per year and it is

> within five years. The cumulative and instantaneous

projected to be ~ 7 x 10
MTBF's are calculated by taking the inverse of the corresponding failure rates;
the current MIBF is ~ 10,000 turbine years and its projection after five years
is 12,000 - 14,000 turbine years. From Ai we estimate the value of Pl as
approximately equal to 10_4 per turbine year.
Having estimated Pl there remains to find P2 and P3. The strike probabil-
2

ity P2 1s estimated to be at most 10“3 for a target area of 1200 ft“; the cal~

culation takes into account the relative position and orientation of the tur-
bine and the target area and it is described in detail by Bush. The damage

probability P, is affected by the width of concrete protecting the critical

3
components and the angle of incidence of the missile. Considering all the

possibilities Bush concludes that the total probability P4 is in the interval
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Figure 3.29.

CUMULATIVE YEARS OF TURBINE OPERATION

Cumulative and Instantaneous Failure Rates for Turbines as a2 Function of
Cumulative Years of Turbine Operation From Table 3.16. (Ref 181}




10_6 to 10~8 per year. The problem of missile generation in a reactor plant

is discussed in more general terms but without quantitative analysis by
Gwaltney (Ref. 183) along with an extensive list of references.

Other probabilistic studies along the spirit of this section include the
study of aircraft hazards for nuclear plants (Ref. 184) and a series of studies
from UKAEA on the evaluation of the risk to a population resulting from the

release of radioactivity (Refs. 185, 186 and 187).
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