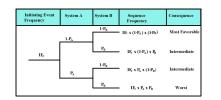
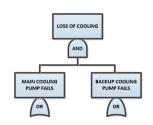
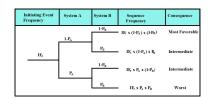
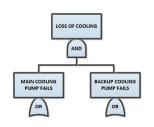


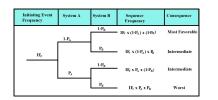
Event Tree/Fault Tree Analysis


- Introduction - Session 1 of 4


- Overview of the generation and analysis of event tree and fault tree analysis
- Describe supporting analysis
 - —System safety analysis
 - Hazard Analysis
 - Failure Modes and Effects Analysis
- Instructor Howard Lambert


Presentation Goals

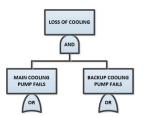

- Motivate audience to the usefulness of event tree and fault tree generation and analysis
- Show how the analysis is used in system safety analysis, reliability and probabilistic risk assessment to generate and analyze undesired events and accident scenarios
- Show how the analysis can recommend safety improvements through hazard reduction, prevention and/or mitigation.
- Discuss historical aspects of system safety analysis, fault tree analysis and probabilistic risk assessment.
- Prerequisite for a training course on event trees and fault trees (for those who want to take the course)
- Numerous examples and case studies of various technologies to illustrate concepts
- What is required for a comprehensive risk analysis?


References

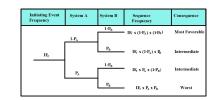
- Methodology
 - EPRI Training Notes
 - PRA procedures guide
 - ASME standard
 - Paper on Initiating and Enabling Events
- Fault Tree Analysis
 - Fault Tree Handbook
 - Vesely FTA
- Human Reliability Assessment
 - Tony Spurgin
 - Dougherty and Fragola
 - Swain and Guttman (First Generation)
 - Second Generation HRA techniques CREAM, SPAR etc

References Continued

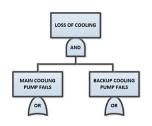
PRAs

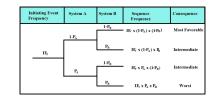

- Reactor Safety Study
- Shoreham Nuclear PRA
- Surry PRA

Safety and Reliability Studies

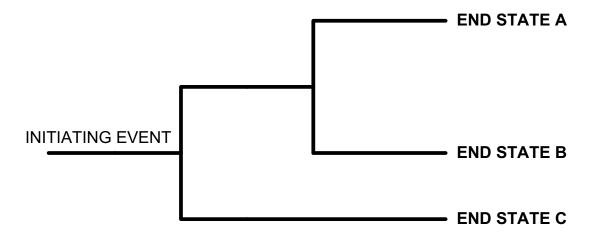

- NIF (LLNL)
- Criticality Safety (LLNL)
- Yucca Mountain (DOE)
- Chlorine Vaporizer (DuPont)
- Salt Process Cell Study (SRS)

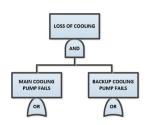
Computer Codes

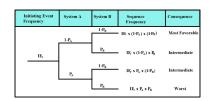

- FTAP
- IMPORTANCE


What are Event Trees and Fault Trees?

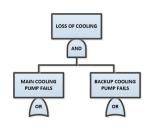
- They are multiple thread logic models that depict the parallel and sequential sequence of events leading to undesired events or accident scenarios
- An Event Tree is an inductive logic model starts with an initiating event and depicts branching nodes that can lead to undesired system states and accident scenarios
 - An event tree is an inductive logic model
 - Future thinking
 - Ask the question "what if?"
 - Specific to general

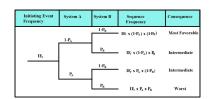


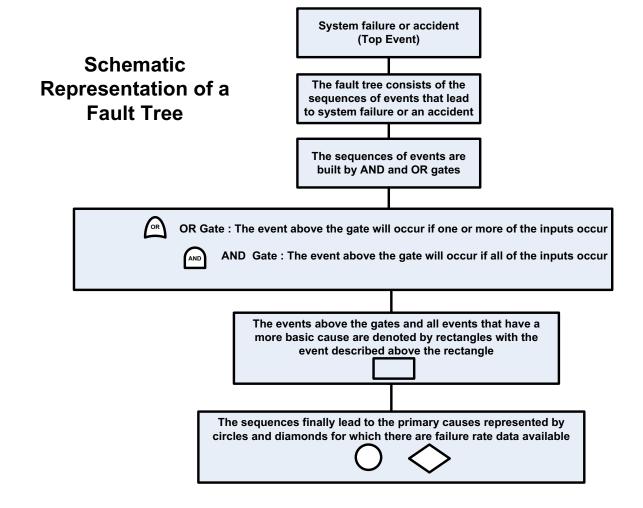

Event Tree Structure

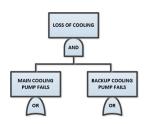

EVENT TREE

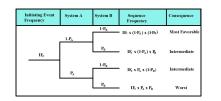
- Branching tree left to right
- Starts with initiating event
- Branch downwards generally indicates failure
- Branch upwards generally indicate success
- Define end states and their consequences

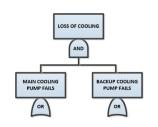


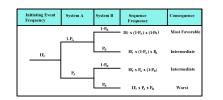

What are Event Trees and Fault Trees?

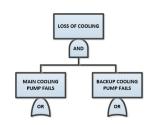


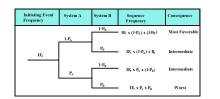

- A Fault Tree is a deductive logic model that starts with an undesired top event and depicts the sequential and parallel events leading to the top event with logic gates such as AND, OR and Combination.
 - A fault tree is a deductive logic model
 - Past thinking
 - Ask the question "How can something occur?
 - General to specific


Levels of Fault Tree Development



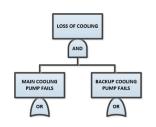

LLNL Programs that use Fault Tree Analysis (FTA) and Event Tree Analysis (ETA)


- Nuclear Reactor Safety USNRC programs
 - Reactor Safety Study (1970's)
 - Material Control Program (mid 1970's)
 - Seismic Safety Research Program (1980's)
 - Control room design reviews (1980's)
 - Reactor Instrumentation studies (1990's to present)
 - Radiation Embrittlement of reactor pressure vessel supports (1993)
 - Portable Reactor Study (2000's)
- AVLIS 80's
- Weapons Assembly/Disassembly Pantex/DAF
- SARs/Safety Studies Super block, HWM, NIF, Site 300, HEAF, Test Site, Yucca Mountain
- Space Program -- NASA
 - Space Shuttle

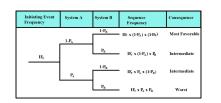

Risk Assessment – Quartet

- 1. What can go wrong?
- How can it go wrong? ←
- 3. How likely is it?
- 4. What are the consequences?

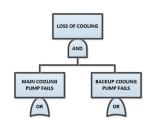
Risk Definition

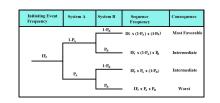


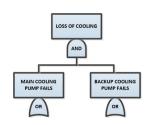
Risk – the frequency with which a given consequence occurs

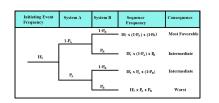

RISK [Consequence Magnitude/unit of time] =

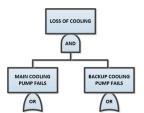
Frequency [events/unit of time]

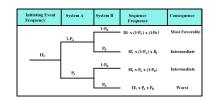

x Consequences [magnitude/event]


Chinese Fortune Cookie

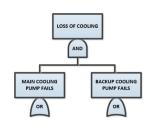

- Keep in mind it's the <u>journey</u> that counts and not the <u>destination</u> that counts
- For safety and risk assessment both the journey and destination counts
- Journey (process) = scope, assumptions, initial conditions, scenario definitions, screening, system understanding, failure mode identification, hazards analysis, model generation
- Destination = min cut sets, probability calculations,
 consequence analysis, computer analysis, graphs, bar charts etc


What can go wrong?

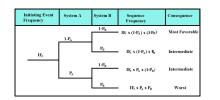

- What are the scenarios that can cause injury or harm?
 - E.g. fire, explosion, radiological or toxicological release
 - How can these accident scenarios occur?
 - Risk assessment uses symbolic logic trees to generate and analyze these scenarios, e.g.,
 - Event trees
 - Fault trees
 - Other


Usefulness of event trees and fault trees

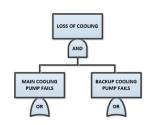
- The process of constructing them leads to insights regarding system operation and system failure modes
- They can be qualitatively evaluated e.g. find the root causes of failure, i.e., human error, hardware failure, software failure, environmental conditions, etc.
- Identification of Single point failures and common cause failures
- They can be quantitatively evaluated e.g., find the probability/frequency of system failure and dominant risk contributors

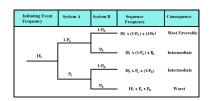


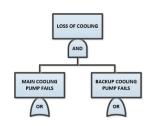
Types of Events/Scenarios Analyzed

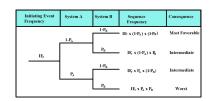


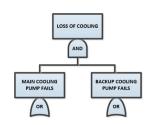
Types of undesired events and accident scenarios analyzed

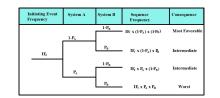

- Reliability
 - Failure to perform required functions or failure to achieve Mission goals
 - Use denial system is unavailable
- Safety
 - system malfunctions cause injury or harm
- Security
 - Sabotage, Classified information violation, Theft of nuclear material, security system breach
- Environmental Protection
 - release of toxic, biological or radioactive substances


Scope of the Analysis

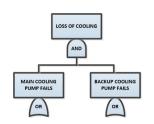

- Goals and Objectives of the Study
- Time Available to conduct the Study
- Information available
- Resources Available
- Temporal and Spatial Bounds
- What analysis techniques (basis) are used to determine if the process is safe and/or reliability?
- Extensiveness of the consequence analysis
- Type of initiating events to be considered
- What is the reliability trial?
- System Mode of Operation startup, steady state, shutdown


Important topics

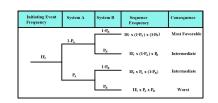

- Reliability trial
 - Assumptions (initial conditions)
 - System Description (Nuclear Industry uses system notebooks)
 - Initiating event identification
 - Internal events
 - External events
 - Data Analysis
 - Models and software used
- Human Reliability Assessment
- Initiating Event Fault tree analysis
 - Two types of failures
 - Initiating and enabling events


Important topics Continued

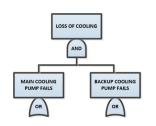
- Success Criteria
- Master Logic Diagrams
- Event Sequence Diagrams
- Time Lines
- Directed Graph Analysis
- Safety Goals
- Transparency
- Traceability
- Laws of conditional probability do not hold

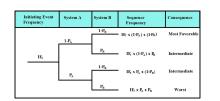


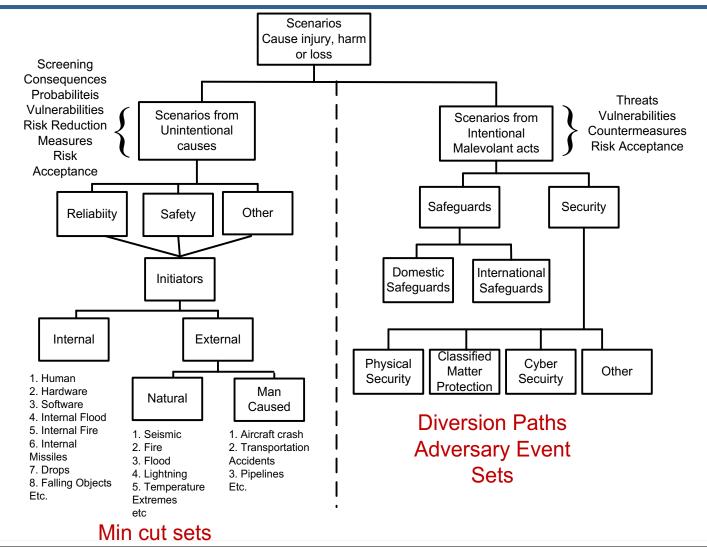
Assumptions (examples)

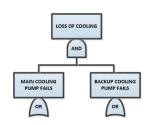


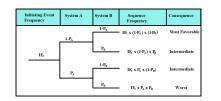
Safety and Reliability

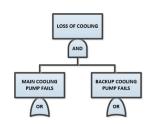

- Existence or non-existence of a feature or condition may involve success criteria
- Design or Construction Errors
- Operator Recovery
- Flammable Mixtures
 - 30% of the time on aircraft with heated center wing tanks
 - 100% of the time when space shuttle is filled with liquid hydrogen and oxygen
- Flow diversion paths are not considered for pipes that have less than ½" in diameter
- No pre-existing failures for space shuttle
- Reliability of connectors assumed to be one e.g., pipes and wires
- Malevolent Acts/sabotage excluded

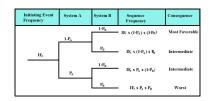

Assumptions Continued

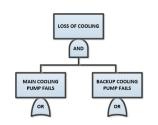


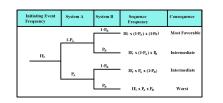

- Safeguards and Security
 - Knowledge of adversary(ies)
 - Types of threats covert, overt, combination, sabotage
 - Resources
 - Collusion

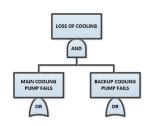

Scenario Breakdown – Scope/Initiating Events

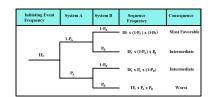


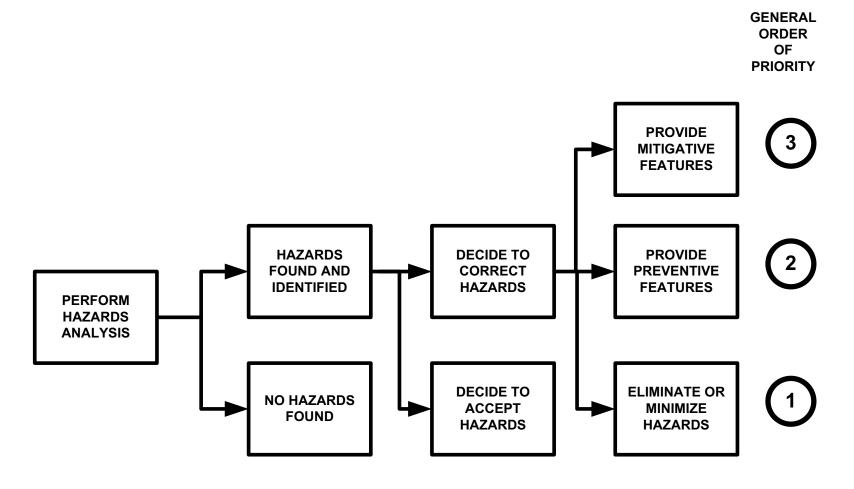

System Safety Analysis

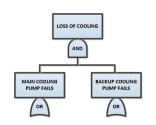

- Use experience both direct and related
- Analysis updated and revised throughout system life cycle, womb to tomb, cradle to grave philosophy
- System familiarization and understanding
- Identification of hazards, undesired events and accident/diversion scenarios

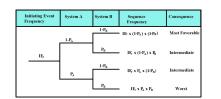

System Safety Analysis -- Continued

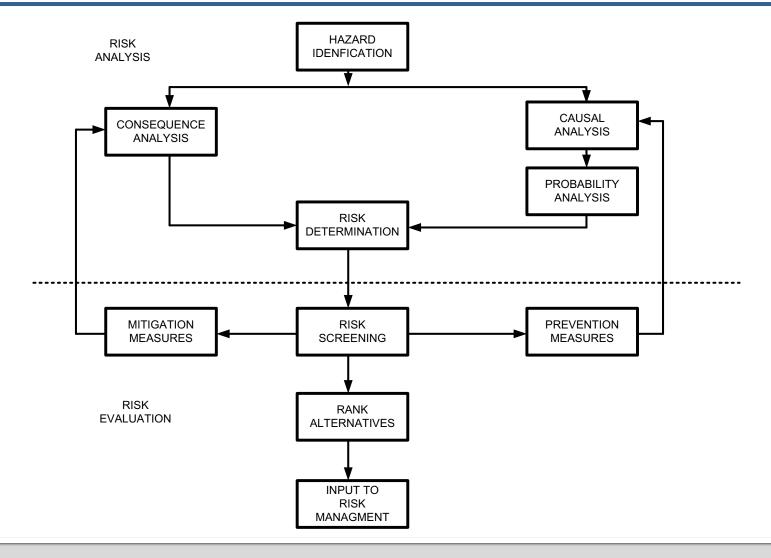

- Modeling and analysis techniques
 - Inductive analysis (what if, bottom-up, future thinking analysis)
 - Deductive (how can something occur, top-down, past thinking analysis)
- Implementation of controls preventive, mitigation and administrative measures to achieve adequate level of reliability, safety, environmental protection, security etc.
- Tradeoff studies consider cost, legal and contractual requirements, competing objectives, reliability versus safety versus security, political etc.

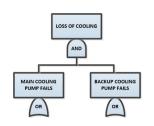

System Safety Analysis Techniques

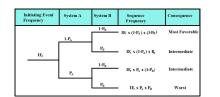


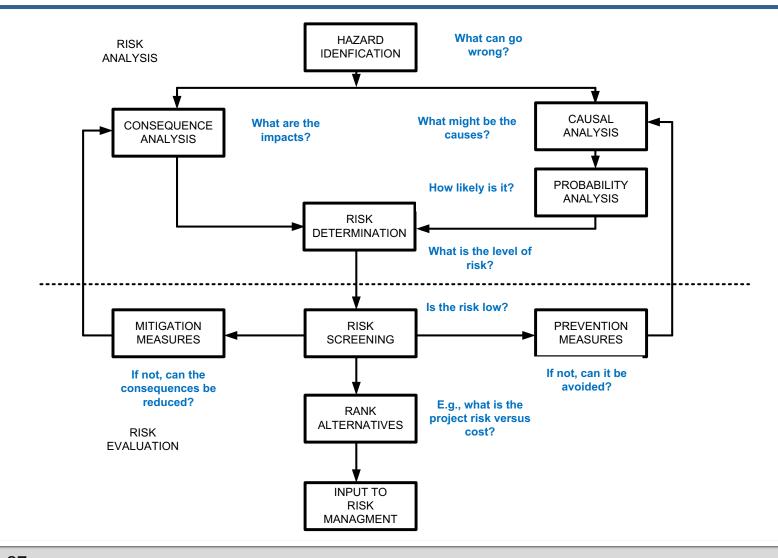

- Inductive analysis techniques
 - Preliminary hazards analysis
 - Fault hazard analysis
 - Hazards and Operability Study -- HAZOP
 - Failure modes and affects analysis (FMEA)
 - Event Trees
 - Markov chains
 - What if
 - Checklists
- Deductive analysis techniques
 - Fault Tree Analysis
 - MORT
- Cause Consequence Diagrams
- Red indicates techniques used in in-class assignments

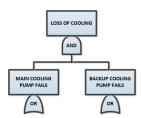

HAZARDS ANALYSIS FLOWCHART

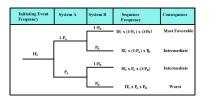


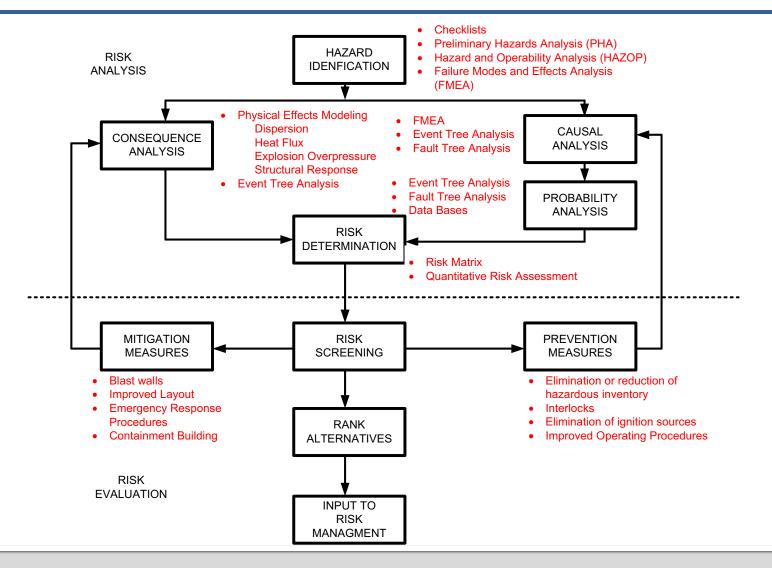


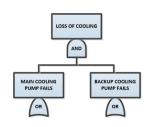

Risk Assessment and Management Flowchart

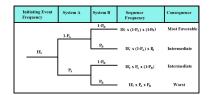





Risk Assessment and Management Flowchart Questions

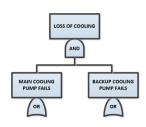




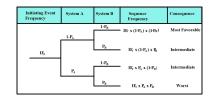

Risk Assessment and Management Flowchart -- Tools

Hazards Checklists

Group	Hazard En	ergy Source
Electrical	Battery banks	Pumps
	Cable runs	Power tools
	Diesel generators	Switchgear
	Electrical equipment	Service outlets, fittings
	Hot plates	Transformers
	Heaters	Transmission lines
	High voltage	Underground wiring
	Locomotive, Electrical	Wiring
	Motors	
Thermal	Bunsen burner/ Hot plates	Boilers
	Electrical equipment	Lasers
	Furnaces	Electrical wiring
	Heaters	Welding surfaces
	Steam lines	Engine exhaust
	Welding torch	Exothermic reaction
Kinetic - Linear and	Belts	Vehicles
Rotational (Friction)	Bearings	Rail cars
	Fans	Fork lifts
	Gears	Carts
	Motors	Dollies
	Presses	Centrifuges
	Grinders	Drills
	Crane Loads (in motion)	Saws
	Power tools	Shears
Pyrophoric Material	Pu and U metal	Pu
Spontaneous	Nitric acid and organics	Paint solvents
Combustion	Grease	Cleaning/Decon solvents
	Diesel fuel	Gasoline
Open Flame	Bunsen burners	Welding/cutting flames
Flammables	Flammable gases	Compressed flammable gases
	Flammable liquids	Propane
	Natural Gas	Paint solvent
	Spay paint	Cleaning/decon solvents
	Gasoline	
Combustibles	Combustible materials	Paper/wood products
	Plastics	Petroleum based products
Chemical Reactions	Uncontrolled chemical reactions	
Potential (pressure)	Gas bottles	Boilers
•	Gas receivers	Heated surge tanks
	Pressure vessels	Autoclaves
	Steam headers and lines	Furnaces
	Coiled springs	Stressed members
Non-Ionizing Radiation		


Reference:

HAZARD ANALYSIS METHODOLOGY

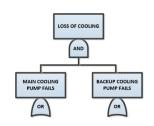

Westinghouse Savannah River Company Projects

Engineering and Construction Division

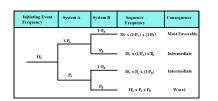
Aiken, SC

Hazards Checklists Continued

Group	Hazard Energy Source		
Potential (height/mass)	Stairs	Trucks	
	Lifts	Jacks	
	Cranes	Scaffolds and Ladders	
1	Elevated doors	Pits	
1	Loading docks	Elevated work Surfaces	
1	Hoists	Mezzanines	
1	Elevators		
Firearm Discharge	Firearm Discharge (puncturing)		
Explosive/Pyrophoric	Explosive gases	Dusts	
Material	Explosive chemicals	Nitrates	
	Hydrogen	Peroxides	
	Dynamite	Caps	
	Sodium	Plutonium/Uranium	
	Hydrogen (batteries)	Potassium	
	Primer cord	Electric squibs	
	Propane	Superoxides	
Radiological Material	Radiological Material		
Hazardous Material	Alkali Metals	Ammonia and compounds	
	Asphyxiants	Beryllium and compounds	
1	Biologicals	Chlorine and compounds	
	Carcinogens	Trichlorethylene	
1	Corrosives	Decontamination solutions	
	Acetone	Dusts and particles	
	Fluorides	Sandblasting particles	
	Lead	Metal plating	
	Oxidizers	Herbicides	
	Asphyxiation	Insecticides	
	Drowning	Bacteria	
	Other toxics	Viruses	
Ionizing Radiation	Fissile material	Electron beams	
Sources	Radiography equipment	X-ray machines	
	Radioactive material	Critical masses	
	Radioactive sources	Contamination	
Fissile Material	Fissile Material	Fissionable Material	
Non-facility Events	Explosion	Power Outage	
,	Fire	Aircraft crash	
	Other	Transportation accident	
Vehicles in Motion	Airplane	Forklifts	
	Helicopter	Truck/Car	
	Train	Heavy construction equipment	
Crane	Crane	Crane loads	
Natural Phenomena	Straight wind	Lightning	
	Tornado	Rain/hail	
	Earthquake	Snow, freezing weather	
	Flood	, 4	


Reference:

HAZARD ANALYSIS METHODOLOGY

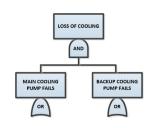

Westinghouse Savannah River Company Projects

Engineering and Construction Division

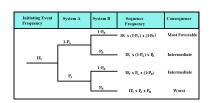
Aiken, SC

Sample Hazard Identification Checklist – Page 1, Biological and Chemical

Biological Hazards


Non-Select Agents Select Agents

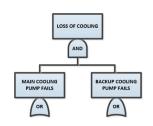
RG1 Agents
 RG2 Agents
 RG3 Agents
 RG3 Agents


- Other Biohazard (e.g., nucleic acid, lab animals, contaminated needles/sharps, animal/human tissues & fluids)
- Materials covered under OSHA Blood borne Pathogens Standard 29 CFR 1910.1030

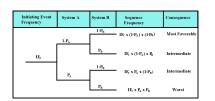
II. Chemical Hazards

- Flammable, volatile or fuming
- Toxic materials (acutely toxic, toxic, bio-derived toxin, systemic toxin, toxic gases)
- Corrosives/irritants
- Reactive materials (e.g., air/water sensitive; pyrophoric; thermally, shock, or friction sensitive; perchlorate)
- Carcinogens, mutagens, reproductive hazards
- Pesticides
- Beryllium
- Materials of special concern (e.g., alkali metals, fluorine, asbestos, lead, mercury, PCB)
- Other regulated metals (e.g., chromium, copper, nickel, zinc)
- Other

Sample Hazard Identification Checklist – Page 2, Explosive and Radiological



III. Explosive Hazards


- Primary High Explosives
- Secondary High Explosives
- Propellants/Low Explosives
- Firearms Ammunition
- Fragmentation Hazards (Primary Fragments)
- Group L Explosives

IV. Radiological Hazards

- <1 of Reportable Quantities (RQ) thresholds (40 CFR 302.4 Appendix B)</p>
- >1 of RQ thresholds < Cat. 3 Thresholds (DOE-STD-1027-92, Table A.1)</p>
- >Cat. 3 Thresholds (DOE-STD-1027-92, Table A.1) < Cat. 2 Thresholds (DOE-STD-1027-92, Table A.1)
- Radiation generating devices not covered by DOE O 420.2B (X-rays, Electron Beams, Radiography Equipment)
- Radiation generating devices covered by DOE O 420.2B (Accelerators).
- Exempted materials:
 - Radioactive Certified Sealed Sources
 - Rad. In Type B Containers with current certificates of compliance
 - Either in quantities>Cat. 3 thresholds (DOE-STD-1027-92, Table A.1)

Sample Hazard Identification Checklist – Page 3, Industrial

V. Industrial Hazards

Electrical

Battery banks, Cable runs, Diesel generators, Electrical equipment, Heaters, High voltage (> 600V), Motors, Power tools, Pumps, Service outlets, Fittings, Switchgear, Transformers, Capacitors, Magnetic fields, Transmission lines, Wiring/underground wiring, Other

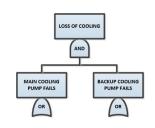
Thermal

Boilers, Bunsen burner/hot plates, Electrical equipment, Electrical wiring, Engine exhaust, Furnaces, Heaters, Lasers, Steam lines, Welding surfaces, Welding torch, Other

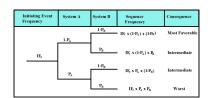
Kinetic

Acceleration/deceleration, Bearings, Belts, Carts/dollies, Centrifuges, Crane loads (in motion), Drills, Fans, Firearm discharge, Fork lifts, Gears, Grinders, Motors, Power tools, Presses/shears, Saws, Vehicles, Airplane, Vibration, Other

Potential (pressure)


Autoclaves, Boilers, Coiled springs, Furnaces, Gas bottles, Gas receivers, Pressure vessels, Vacuum vessels, Pressurized system (e.g., air), Steam header and lines, Stressed members, Other

Potential (height/mass)


Cranes/hoists, Elevated doors, Elevated work surfaces, Elevators, Lifts, Loading docks, Mezzanines, Floor pits, Scaffolds and ladders, Stacked material, Stairs, Other

Internal Flooding Sources

Domestic water, Fire suppression piping, Process water, Other

NASA Activities and Identified Hazards

MANNED LAUNCHES

Flight Safety: Hazards to Crew, Passengers, System, Mission,

Payload

Range Safety: Hazards to Public and NASA People and Property

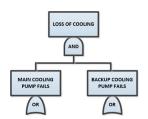
- Debris and Explosive Fragments
- Radioactive Fragments and Releases
- Blast
- Toxic Emissions
- Sonic Boom

UNMANNED LAUNCHES

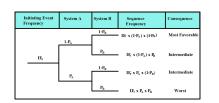
Flight Safety: Hazards to System, Mission, Payload

Range Safety: Hazards to Public and NASA People and Property

- Debris and Explosive Fragments
- Radioactive Fragments and Releases
- Blast
- Toxic Emissions
- Sonic Boom


AERONAUTICS (Aircraft, Rockets, Balloons)

Flight Safety: Hazards to Crew, Passengers, System, Mission,


Payload

Range Safety: Hazards to Public and NASA People and Property

- Crash Impact
- Fire and Explosion
- Sonic Boom

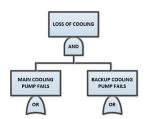
NASA Activities and Identified Hazards Cont'd

TRANSPORTATION (All Modes)

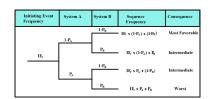
Accidents: Hazards to Public and NASA People and Property

- Hazardous Materials
- Large Objects

STORAGE FACILITIES


Accidents: Hazards to Public and NASA People and Property

- Hazardous Materials
- Pressures, Vacuums, Temperatures

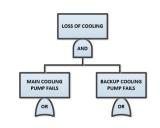

GROUND HANDLING OPERATIONS

Accidents: Hazards to NASA People and Property

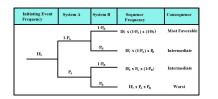
- Hazardous Materials
- Pressures, Vacuums, Temperatures
- Mechanical Electrical
- Noise

NASA Activities and Identified Hazards Cont'd

WORKPLACE ACTIVITIES


Accidents: Hazards to NASA People and Property

 Fire, Explosion, Electrical, Mechanical, Pressures, Vacuums, Toxics, Cryogens, Suffocates Carcinogens, Mutagens, Noise, Microwave, Laser


OPERATIONS IN SPACE

Operational Safety: Hazards to Crew, Systems

- In-Facilities Hazards
- Extravehicular (EVA) Hazards

Checklists for Equipment Categories

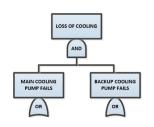
VARIABLES

— FLOW, QUANTITY, TEMPERATURE, PRESSURE, pH, SATURATION, ETC.

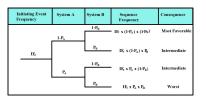
SERVICES

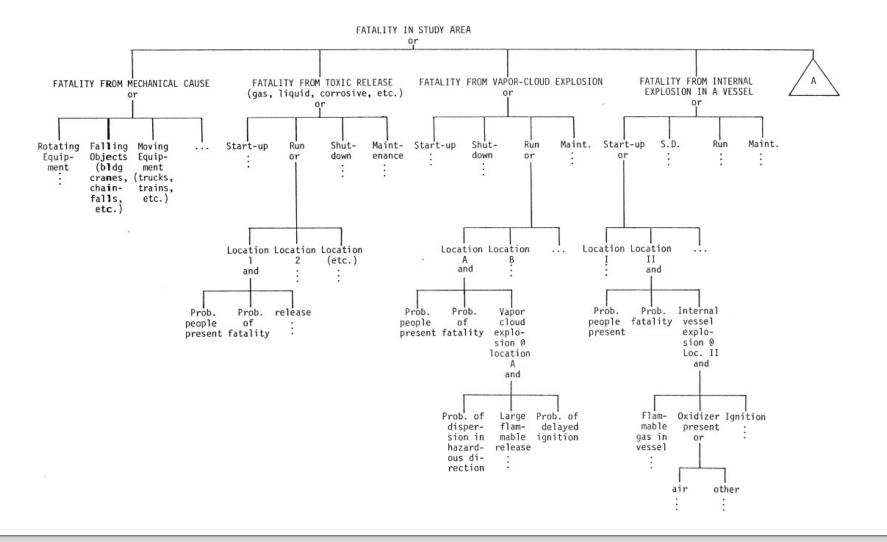
— HEATING, COOLING, ELECTRICITY, WATER, AIR, CONTROL, N2, ETC.

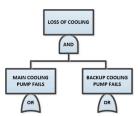
SPECIAL STATES

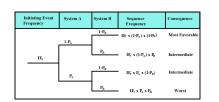

— MAINTENANCE, STARTUP, SHUT DOWN, CATALYST CHANGE, ETC.

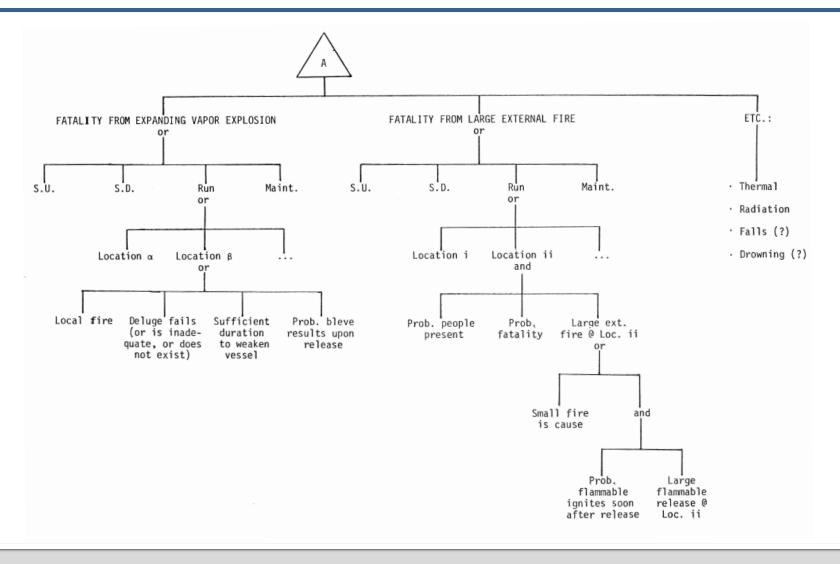
CHANGES

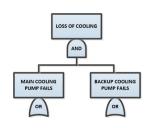

 TOO MUCH, TOO LITTLE, NONE, WATER HAMMER, NON MIXING, DEPOSIT, DRIFT, OSCILLATION, PULSE, FIRE, DROP, CRASH, CORROSION, RUPTURE, LEAK, EXPLOSION, WEAR, OPENING BY OPERATOR, OVERRILL WITH LIQUID


INSTRUMENT


SENSITIVITY, PLACING, RESPONSE TIME


Top Level Fault Tree for Hazards Analysis





Top Level Fault Tree for Hazards Analysis Cont'd

Example -- What if Analysis - DAP Chemical Reactor

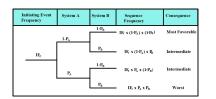
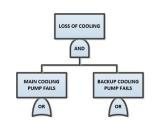


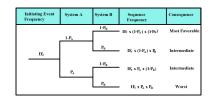
Table 6.9 Sample Page from the What-If Analysis Table for the DAP Process Example

Process: DAP Reactor

Topic Investigated: Toxic Releases


Analysts: Mr. Safety, Ms. Opera, Mr. Design

Date: 05/13/95

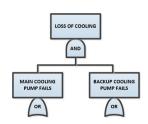

What-If	Consequence/Hazard	Safeguards	Recommendation		
the wrong feed material is delivered instead of phosphoric	Potentially hazardous phosphoric acid or ammonia reactions with	Reliable vendor	Ensure adequate material handling and receiving		
acid?	contaminants, or production of off-specification product	Plant material handling procedures	procedures and labeling exis		
the phosphoric acid concentration is too low?	Unreacted ammonia carryover to the DAP storage tank and	Reliable vendor	Verify phosphoric acid concentration before filling		
	release to the work area	Ammonia detector and alarm	storage tank		
the phosphoric acid is contaminated?	Potentially hazardous phosphoric acid or ammonia reactions with	Reliable vendor	Ensure adequate material handling and receiving		
	contaminants, or production of off-specification product	Plant material handling procedures	procedures and labeling ex		
valve B is closed or plugged?	Unreacted ammonia carryover to the DAP storage tank and	Periodic maintenance	Alarm/shutoff of ammonia (valve A) on low flow		
	release to the work area	Ammonia detector and alarm	through valve B		
		Flow indicator in phosphoric acid line			
too high a proportion of ammonia is supplied to the reactor?	Unreacted ammonia carryover to the DAP storage tank and	Flow indicator in ammonia solution line	Alarm/shutoff of ammonia (valve A) on high flow through valve A		
	release to the work area	Ammonia detector and alarm			

DAP = Diammonium Phosphate

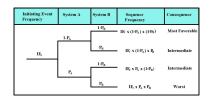
Ref: Guidelines for Hazards Evaluation Procedure Second Edition -- AICHE

Example – Preliminary Hazards Analysis (PHA) – Offshore Oil Platform

									Preventative Measures		sures
Sub- System or Function	Item No.	Hazardous Element	Event Causing Hazard	Hazardous Condition	Event Causing Accident Potential	Potential Accident	Effect	Hazard Class	Hard- ware	Proce- dures	Person- nel
Gas metering	M12	Gas pressure	Leak Rupture Equip. damage Inst. failure	Gas released to module	Spark Flame Static electricity	Fire Explosion	Personnel injury Equip. damage	or II			

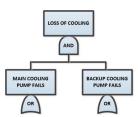

Class I hazards - Catastrophic effects - likely to cause one or more deaths or total plant loss.

Class II hazards - Critical effects - likely to cause severe injury, major property or system damage and total loss of output.

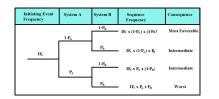

Class III hazards - Marginal effects - likely to cause minor injury, property or system damage with some loss of availability.

Class IV hazards - Negligible effects - unlikely to cause injury, property or system damage.

Ref: Reliability and Risk Assessment, J.D. Andrews and T. R. Moss, Longman Scientific Technical, 1993.



Example – Hazards and Operability Study (HAZOP) – Site 300 – Contained Firing Facility



Hazard	Deviation (Guide words)	Possible Causes	Methods of Detecting Event	Preventative Features	Possible Consequences	Mitigative Features	Comments
Mobile-lift or forklift. Batteries, hydraulic fluid.	Fire on nearby vehicle creates sufficient heat to detonate HE when personnel are present.	Hydraulic fluid leak with ignition source. Hydrogen leak with ignition source.	Observed by personnel. Heat detector alarms. Sprinkler activation.	Inspection of vehicle hydraulic and electrical systems before first use on a given day. Periodic inspection of vehicle batteries. Approved HE handling equipment. Control of ignition sources. Separation distance between combustible materials and HE.	HE detonation. Personnel death or injury.	Facility emergency response procedures. Operational access controls limit number of exposed personnel. Separated emergency exits in firing chamber. HE limits. Remote location of site. Confinement system.	

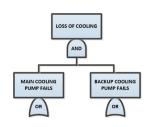
Ref. Gary Johnson and Howard Lambert, "Identification of Process Hazards and Accident Scenarios for Site 300, Lawrence Livermore National Laboratory," UCRL-ID-150822, May 4, 2001

Example – Failure Modes and Effects Analysis (FMEA) -- lubrication system

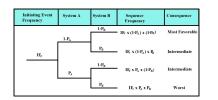
System Reference Description Function	Failure Entry Code	Failure Mode	Possible Causes	System Detected by	Local	On next level	Compensating Provision against Failure	Severity Class	Remarks
Lubrication System	1401	Leakage	Loose connectors. Auxiliary oil pump fault.	Observation - gas in air monitors. Fall of sump level.	Slow leaks have no effect.	Eventual shutdown if uncorrected by loss of oil pressure. Performance loss if air ingress.	2-hourly inspections. Automatic shutdown on low oil pressure.	3	Sump contains 30 liters. A 25% loss should be readily observed, corrected w/o loss of performance.

Severity Index Consequence

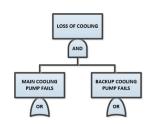
1 Catastrophic Complete loss of system.

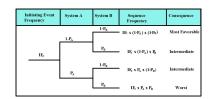

2 Critical Severe reduction of functional performance resulting in a change in operational

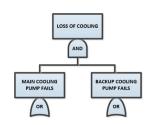
state.

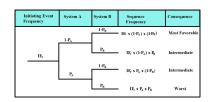

3 Major Degradation of item functional output.

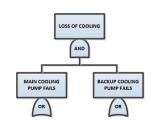
4 Minor No effect on performance.

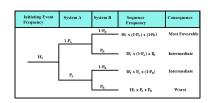

Ref: Reliability and Risk Assessment, J.D. Andrews and T. R. Moss, Longman Scientific Technical, 1993

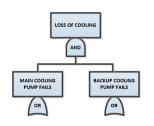

Typical modeled faults Nuclear Power Plants (NPPs)

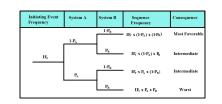

- Failure to Start
- Failure to operate for mission time
- Failure to Open/Close
- Failure to Remain Open/Closed
- Unavailable Due to Test or Maintenance
- Failure to Energize
- Common Cause Failures shared by two or more components or trains
- Human Error
 - Pre-initiator errors rendering the system unavailable at the time of demand
 - Human errors defeating system function during the mission

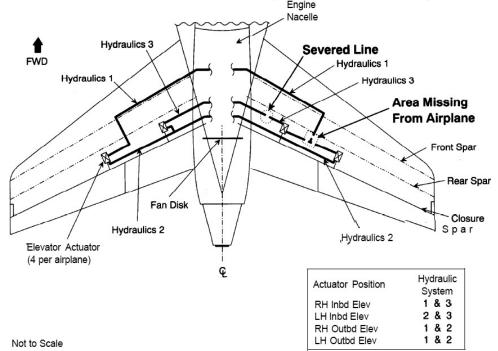

Human Failure Modes (Partial List)

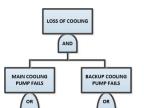

- Failure to perform all or part of the task
- Performance of the task or step incorrectly
- Introduction of some task/step which should not be performed
- Performance of some task/step out of sequence
- Failure to perform the task/step within the allotted time period


Common Cause Failure Analysis (example cold weather)


- Car fails to start in cold weather
- Diesel generators fail to start at a nuclear power plant
- Ice storm at nuclear power plant leads to station blackout
 - Loss of offsite power
 - Diesel generators fail to start
- Nuclear Power Plant in Slovenia service water screens freeze
- O-ring failure -- Challenger Space shuttle


Examples Common Cause Failures

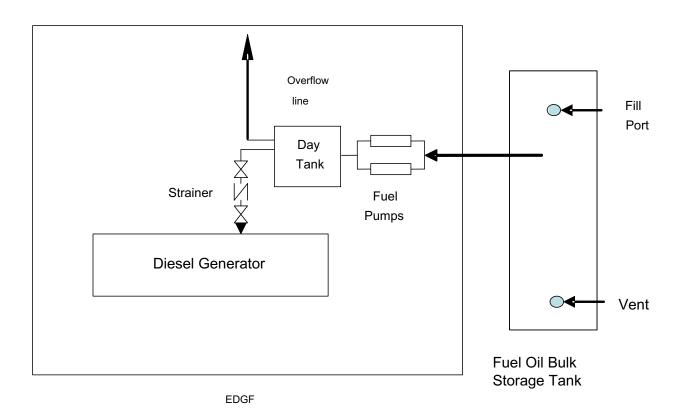

- Three Mile Island Accident (2CCFs) April 1979
 - Redundant AFWS pumps valved out
 - Operator switched off redundant SI pumps
- Salem Unit 1 Feb 1983
 - Both RPS breakers failed to open automatically following valid trip signal on low-low steam generator level
- Gemini Ground Test Fire
- Apollo 13 fuel cell explosion
- Failed Iranian Hostage Mission
- L-1011 flight when all three engines failed
- B-747 engine shutdown from volcanic plume
- Space Shuttle Challenger Accident
- Chernobyl accident
- US Airways Flight 1549
- Lesson: Real accidents seldom if ever result from several independent failures, almost always result from dependent failures

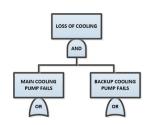


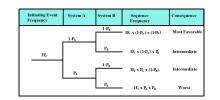
Common Cause Failure Analysis

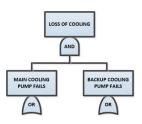


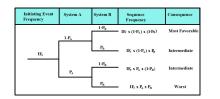
- Space Shuttle Shields (Hydraulic Systems)
- UA 232 July 19, 1989 Sioux City Iowa (Fan Casing Ruptures -- damages all three Hydraulic System)
- US Air 1549 February 2, 2009 (Bird Strike)



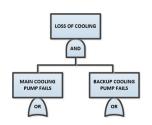

Common Cause Failure Analysis -- Human Error


Georgia Power -- addition of STP to day tanks

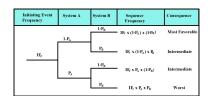

Diesel Generator Fuel Oil System

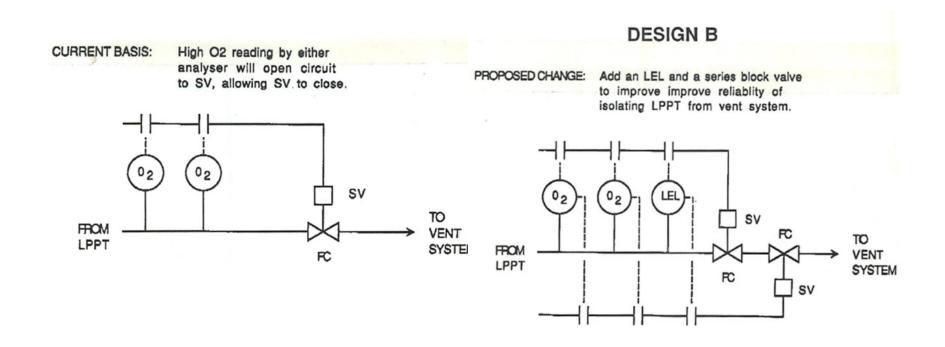

Probabilistic Risk Assessment

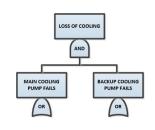
- 1. Identification of the undesired events/accident scenarios
- 2. System understanding
- 3. Logic Model Generation
- 4. Assumptions and Initial Conditions
- Qualitative Evaluation of the Logic Model
- 6. Probabilistic (Quantitative) Evaluation of the Logic Model
- Sensitivity and Importance Analysis
- 8. Consequence Analysis
- Uncertainty Analysis
- 10. Peer Review

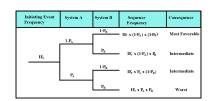


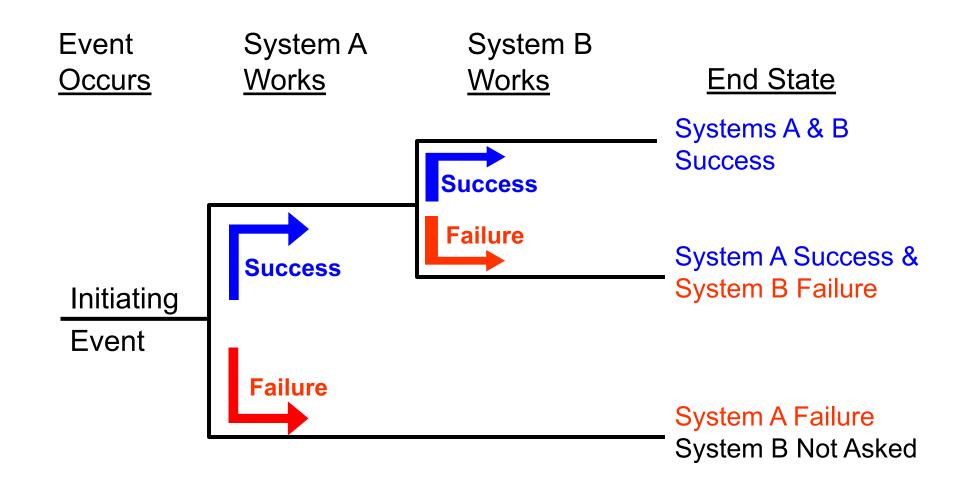
Fields of Expertise for the PCSA (Preclosure safety analysis, Yucca Mountain)

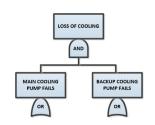


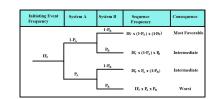

- Structural engineering
- Heat transfer
- Electrical and electronic engineering
- Mechanical engineering
- Fire and explosion analysis
- Dynamics of impact
- Mathematics
- Reliability theory
- Reliability data
- Bayesian statistics
- Seismology
- Seismic equipment and structural analysis
- Atmospheric reentry of meteorites and space debris

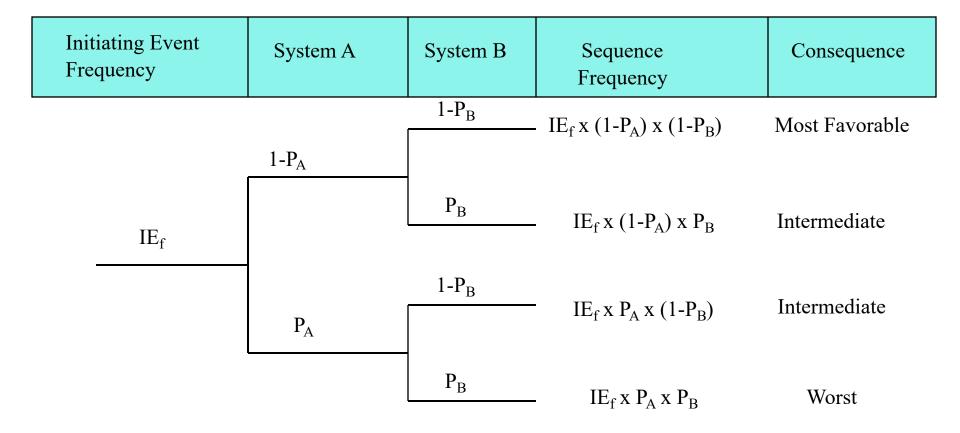

- Hazardous material release and transport
- Criticality
- Human factors and human reliability
- Nuclear operations
- Nuclear regulations
- Equipment operation, failure modes and failure causes
- Probabilistic risk assessment
- Hydrology
- Meteorology
- Lightning effects
- Aircraft
- Nuclear materials and source term
- Radiation transport and dose consequences

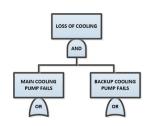

Type of example addressed in presentation

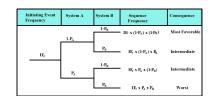


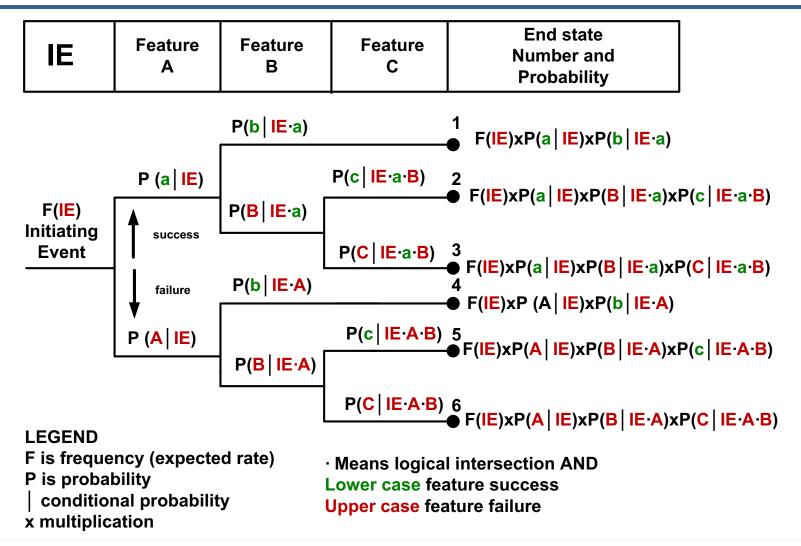


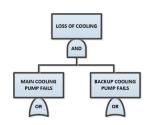

Event Tree Construction

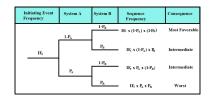


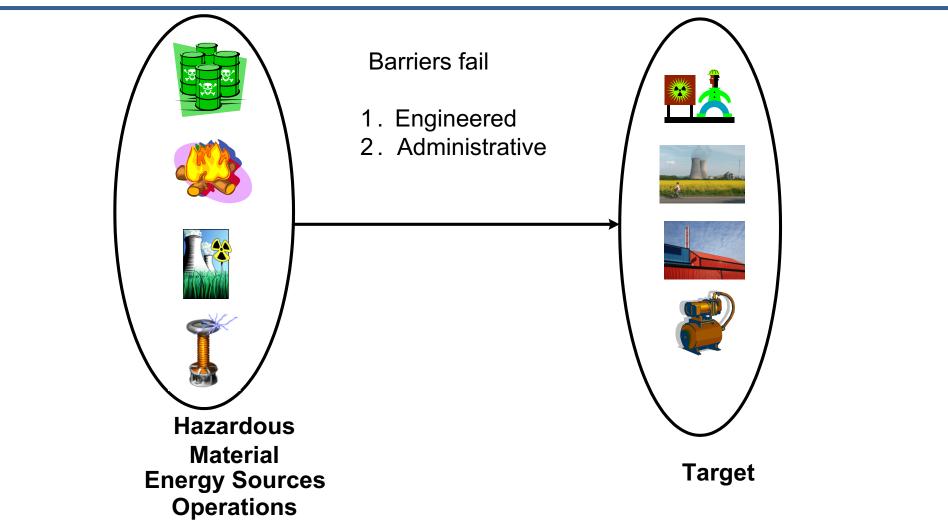


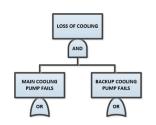

Generic Event Tree

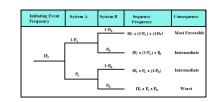


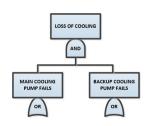



Event Tree Conditional Probabilities

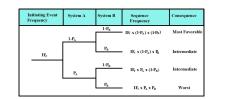





Barrier Analysis

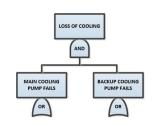


Physical Barriers (Controls)

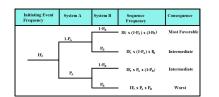


- Engineered safety features
- Safety and relief devices
- Conservative design allowances
- Redundant equipment
- Locked doors and valves

- Ground fault protection devices
- Radiation shielding
- Alarms and annunciators
- Fire barriers and seals
- Containment building
- Blowout walls



Administrative Barriers (Controls)



- Operating and maintenance procedures
- Policies and practices
- Training and education
- Maintenance work requests

- Radiation work permits
- Licensing of operators
- Qualifications

System Representation & Requirements

Principles of operation

Operating cycles

Block diagrams

Systems interaction diagrams

Piping and instrumentation diagrams

Interaction diagrams

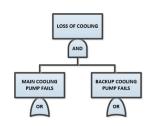
Time lines

Process Control

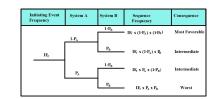
Hardwired interlocks

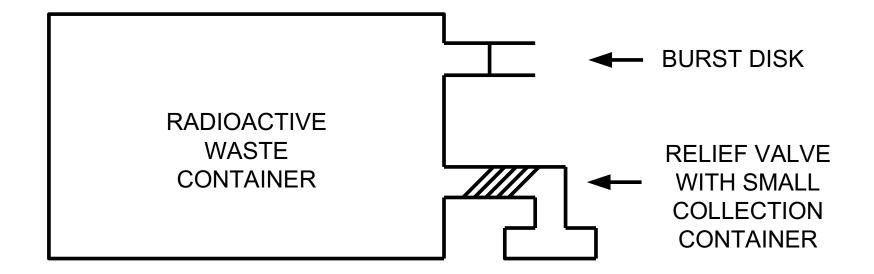
Softwired interlocks

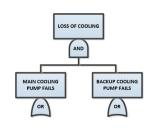
Diversity /defense in depth

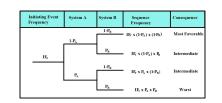

Independence

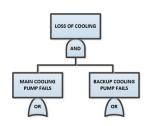
Operability requirements

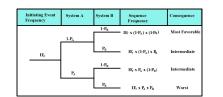

Success criteria

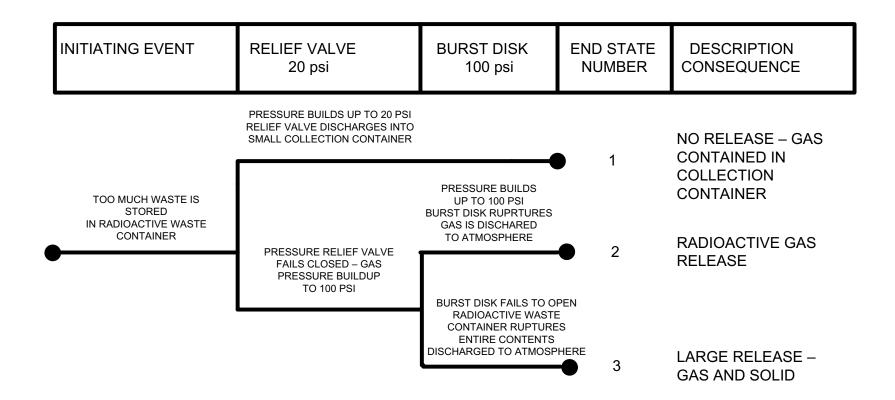

Reliability, safety and security

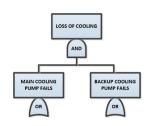

System redundancy (NPP versus space systems)

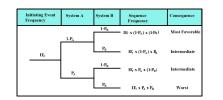

EVENT TREE EXAMPLE

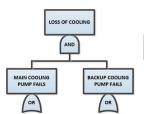


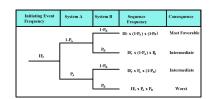

SYSTEM DESCRIPTION

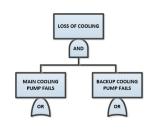


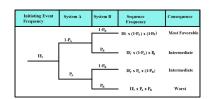

- If too much radioactive waste is stored in the container, there will be a slow buildup of gas pressure.
- The first line of defense if excess pressure builds up is the pressure relief valve that will relieve at 20 psi and the radioactive gas will be contained in the small collection container
- If pressure relief valve fails to open, then the second of defense is that the burst disk will open at 100 psi and the gas will be released to the atmosphere
- If both the pressure relief valve fails and the burst disk fails, then eventually the container will rupture and the largest release of radioactivity will occur

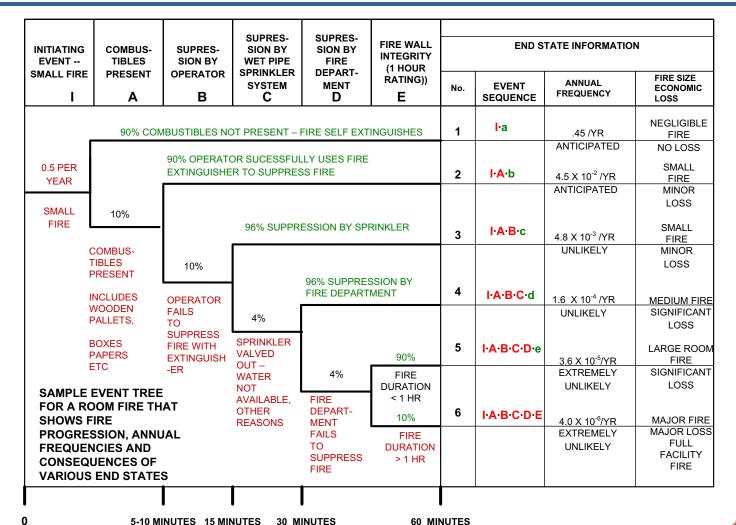

Event tree for radioactive release



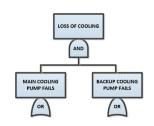

Room/Facility Fire Event Tree


- Facility Layout -- Room with 1 hour fire wall
- Engineered Controls
 - Wet pipe sprinkler system
- Administrative Controls
 - Transient combustibles
 - Fire extinguisher
 - Fire Department
- Undesired Event States
 - Room Fire
 - Full Facility Fire

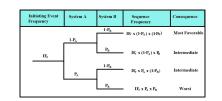

Fire risk methodology includes three basic tasks

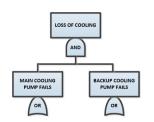


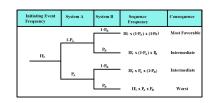
- These include
 - 1. Identify "critical locations and assess the frequency of fires
 - Estimate fire growth times and compute detection and suppression times
 - 3. Determine system/plant response
- An event tree that depicts fire ignition and growth is shown in the next slide



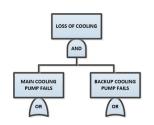
SAMPLE EVENT TREE – ROOM FIRE



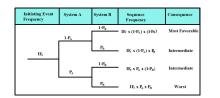

TIME SINCE FIRE STARTED


FAULT TREE ANALYSIS

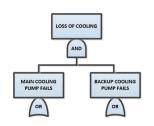
- Define the Top Event
- Types of events in fault tree analysis
- Deductive logic model -- top down approach
- Uses standard OR and AND gates (other) to describe events that have a more basic cause
- Types of AND gates active versus standby redundancy
- Root causes are basic events represented by
 - Circles
 - Diamonds
- Initiating and Enabling Events
- Min cut sets (System Failure Modes)
- Min path sets (Tie sets, success logic)

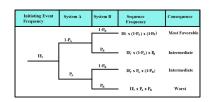


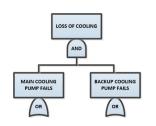
Introduction

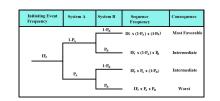


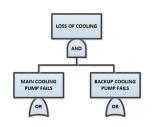
- Types of events in fault tree analysis
 - Normal Events those that are expected to occur
 - Type 1 intended function is not achieved
 - Type 2 unintended function is achieved
- Basic events
 - Initiating events
 - Enabling events
- Human error
 - Latent
 - Dynamic
 - Initiator
 - Error of Omission
 - Error Commission

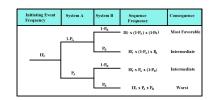



Normal Events

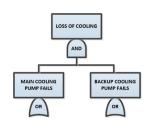

- Describe intrinsic hazards -- expected to occur with no failures examples below
- Rich Gasoline Mixture during vehicle startup
- Car has heated surfaces when operated
- Hot water tank emits flue gases that contain carbon monoxide
- House power initially available when gas leak occurs


Type 1 events (examples)

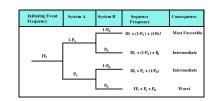

- Type 1 fault events (intended function not achieved)
 - Missile Fails to Launch upon demand
 - Sprinkler system fails to activate in a fire
 - Air bag fail to deploy in an auto accident
 - Fissile material handlers fail to clean out glove box (human error of omission)
 - Alarm Inactive
 - Car Fails to Start

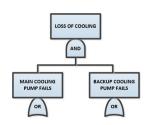

Type 2 Fault Events (examples)

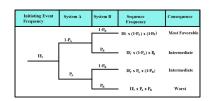
- Type 2 fault events (inadvertent, unwanted function achieved)
 - Inadvertent Launch of a missile
 - Missile blows up on the launch pad
 - Inadvertent sprinkler activation
 - Inadvertent air bag deployment
 - Fissile material handlers move special nuclear material to the wrong glovebox (human error of commission)
 - False Alarm
 - Car Starts in gear

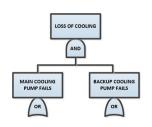


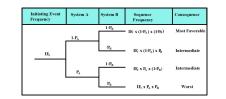
Wet pipe sprinkler system



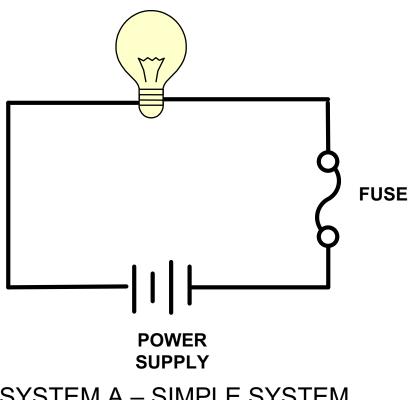

- SPRINKLER HEAD IN WET PIPE SPRINKLER SYSTEM FUSES OPEN AT 80°F
 - 1. What is the type 1 fault event for the sprinkler head and corresponding undesired event for the system?
 - 2. What is the type 2 fault event for the sprinkler head and corresponding undesired event for the system?


Fault tree construction

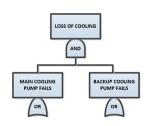

- Traditional fault tree construction evolved from aerospace industry in the 60's
 - Use immediate cause principle
 - Operator for type 1 fault events
 - Operator for type 2 fault events
- Fault tree analysis of control systems use of directed graphs
 - Much more complicated to understand
 - Handle control systems with logic loops
 - Feedback
 - Feedforward
 - combination


Light bulb example

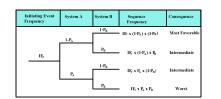
- Simple system that illustrates important concepts in fault tree analysis
 - Series system
 - Redundancy
 - Series parallel system
 - Structuring fault trees
 - Min cut sets (system failure modes)
 - Different top events when considering reliability and safety
 - Consequence analysis
 - Tradeoff analysis

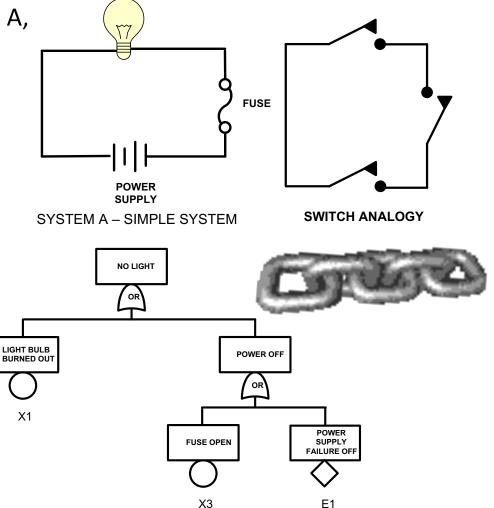


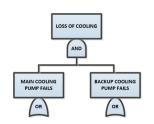
FAULT TREE -LIGHT BULB EXAMPLE



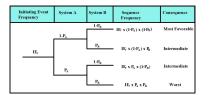
Two top events

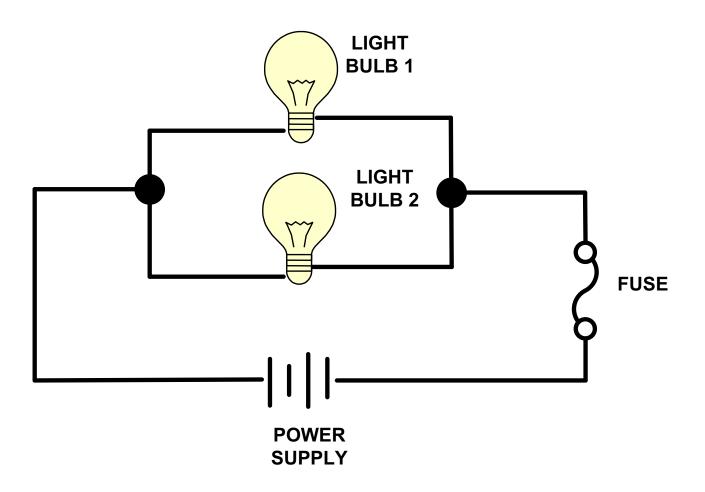

- 1. No light (reliability)
- 2. Wire catches fire (safety)

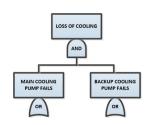

SYSTEM A - SIMPLE SYSTEM

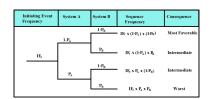


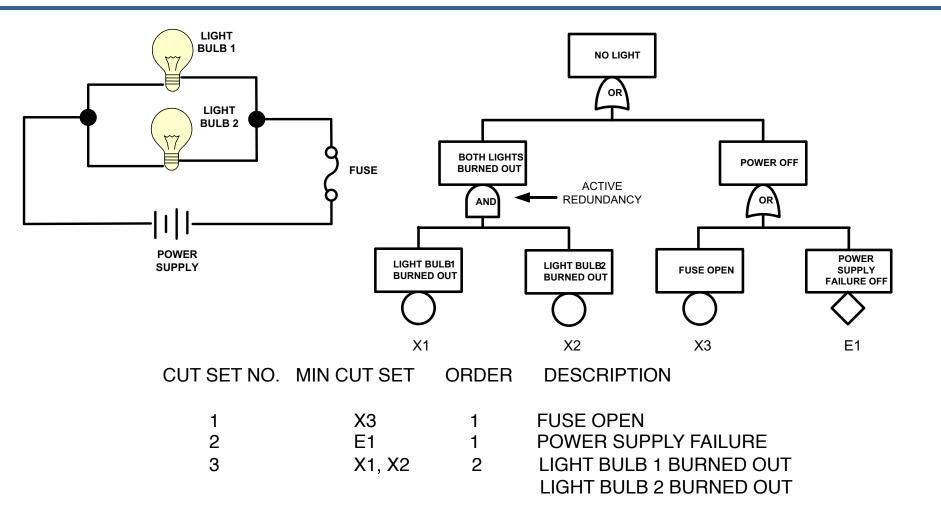
Min Cut Set Analysis

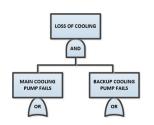


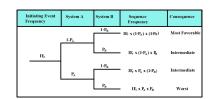

- Reliability fault tree for system A, no light
 - Simple series system
 - Fault tree is all OR gates
 - 3 single point failures
 - 3 min cut sets of order 1
- 3 Min Cut Sets
 - 1. Light bulb burned out
 - 2. Fuse open
 - 3. Power supply failure off

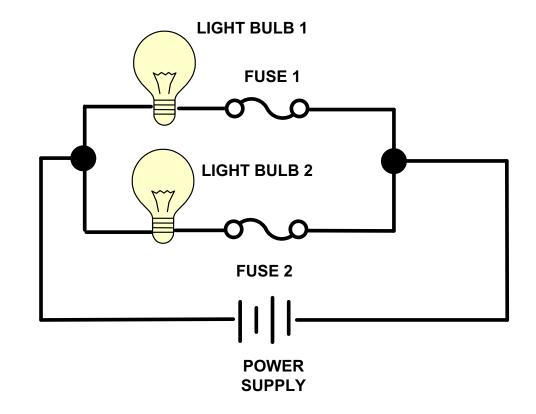


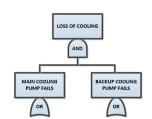

Fault tree – System B two light bulbs with fuse



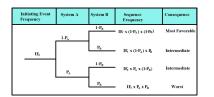



Fault tree – System B

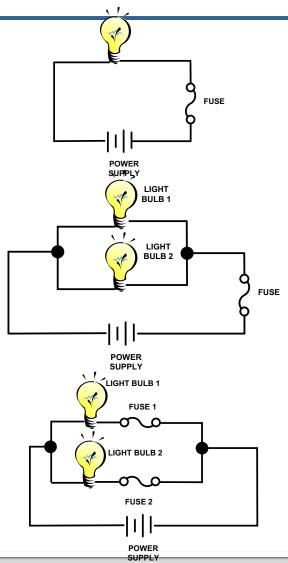


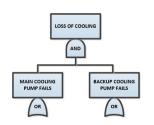


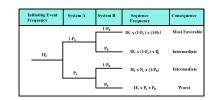
Fault tree – System C two light bulbs and two fuses



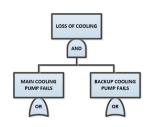
What are the min cut sets??

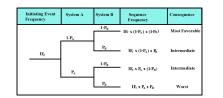


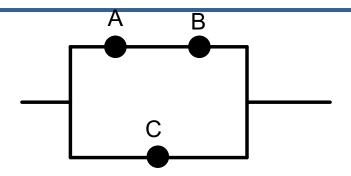

Min Cut Set Analysis – Three systems


Min Cut Set Analysis

- System A (3 min cut sets)
- 1. Light bulb burned out
- 2. Fuse open
- 3. Power supply failure off
- System B (3 min cut sets)
- 1. Fuse open
- 2. Power supply failure off
- Light Bulb 1 burned out & light bulb 2 burned out
- System C (5 min cut sets)
- 1. Power supply failure off
- Light Bulb 1 burned out & light bulb 2 burned out
- 3. Fuse 1 open & Fuse 2 open
- 4. Light Bulb 1 burned out & Fuse 2 open
- 5. Light Bulb 2 burned out & Fuse 1 open


Duality Principle


Important concept

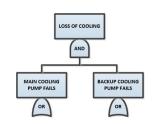


- Start with success criteria
- Use duality principle to define failure logic
- Can reverse process (i.e., failure to success)
- Example
 - System with three pumps A, B and C
 - Pumps A and B have 50% capacity
 - Pump C has 100% capacity

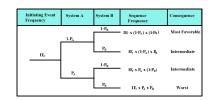
Reliability Network Diagram

RELIABILITY NETWORK DIAGRAM

SUCCESS PATHS (PATH SETS)

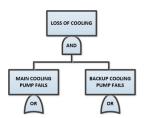

(PUMP A WORKS AND PUMP B WORKS) OR

PUMP C WORKS

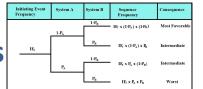

ab, c

MIN CUT SETS

(PUMP A FAILS AND PUMP C FAILS) (PUMP B FAILS AND PUMP C FAILS) AC, BC

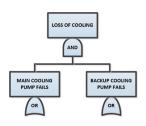


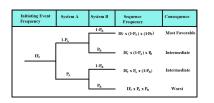
System Analysis: System Success Criteria



Examples of Success to Failure translation:

- 2 of 4 pumps for success
- 1 of 2 charging pumps OR 2 of 2 Safety Injection pumps for success


Success Criteria for the mitigating system tabulated as a function of accident initiators

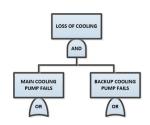

ACCIDENT INITIATOR	SUCCESS CRITERIA*				
	COOLANT INJECTION	CONTAINMENT HEAT REMOVAL			
Large LOCA: Steam Break > 0.08 ft ² Liquid Break > 0.1 ft ²	1 of 4 LPCI Pumps OR 1 of 2 Core Spray Pumps	1 RHR			
Medium LOCA: Steam Break 0.016 to 0.08 ft ² Liquid Break: 0.004 to 0.1 ft ²	HPCI OR 1 of 4 LPCI Pumps OR 1 of 2 CS Pumps ADS*	1 RHR			
Small LOCA: Steam Break < 0.016 ft ² Liquid Break < 0.004 ft ²	HPCI OR RCIC OR 1 Feedwater Pump OR 1 of 2 CS Pumps OR 1 of 4 LPCI Pumps OR 1 Condensate Pump	Normal Heat Removal OR 1 RHR OR RCIC in St. Cond. Mode			
Transient	Same as Small LOCA	Same as Small LOCA			
IORV	Same as Small LOCA	Same as Small LOCA			
Transient + SORV	Same as Small LOCA	Same as Small LOCA			

Shoreham Nuclear Power Plant

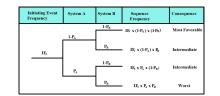
MARK II BWR 4

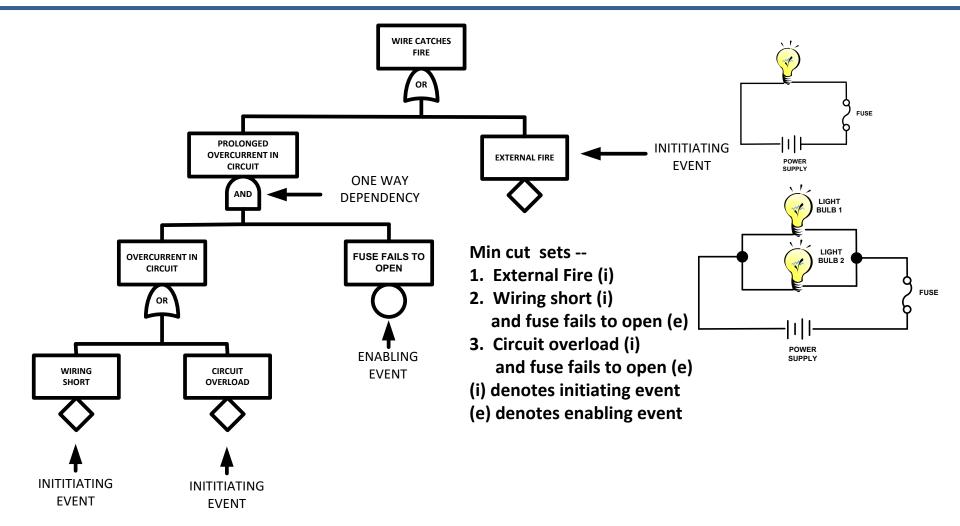
Min Cut Sets versus Min Path Sets

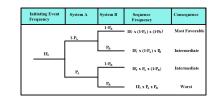
Min Cut Sets

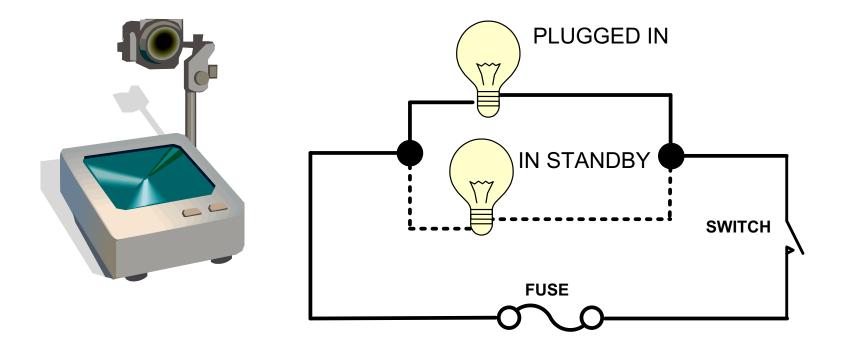

- System A (3 min cut sets)
- 1. Light bulb burned out
- 2. Fuse open
- 3. Power supply failure off
- System B (3 min cut sets)
- 1. Fuse open
- 2. Power supply failure off
- 3. Light Bulb 1 burned out & light bulb 2 burned out
- System C (5 min cut sets)
- 1. Power supply failure off
- 2. Light Bulb 1 burned out & light bulb 2 burned out
- 3. Fuse 1 open & Fuse 2 open
- 4. Light Bulb 1 burned out & Fuse 2 open
- 5. Light Bulb 2 burned out & Fuse 1 open

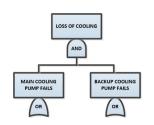
Min Path (Tie) Sets

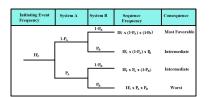

- System A (1 min path set)
- 1. Light bulb works & fuse works & power supply works
- System B (2 min path sets)
- Light bulb 1 works & fuse works & power supply works
- Light bulb 2 works & fuse works & power supply works
- System C (2 min path sets)
- Light bulb 1 works & fuse1 works & power supply works
- Light bulb 2 works & fuse2 works & power supply works

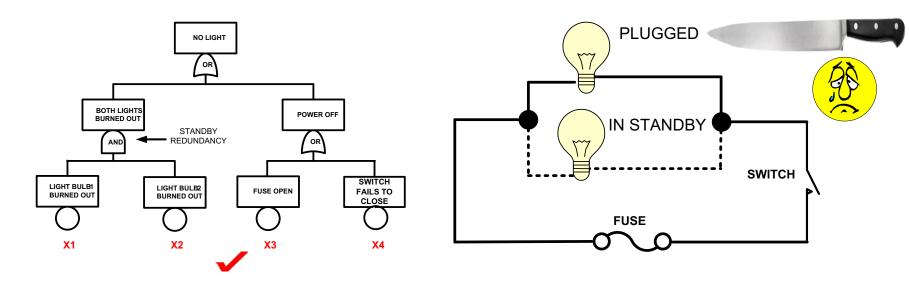


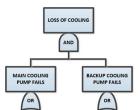

Fault tree for system A or B – wire catches fire

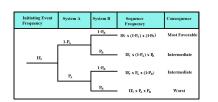


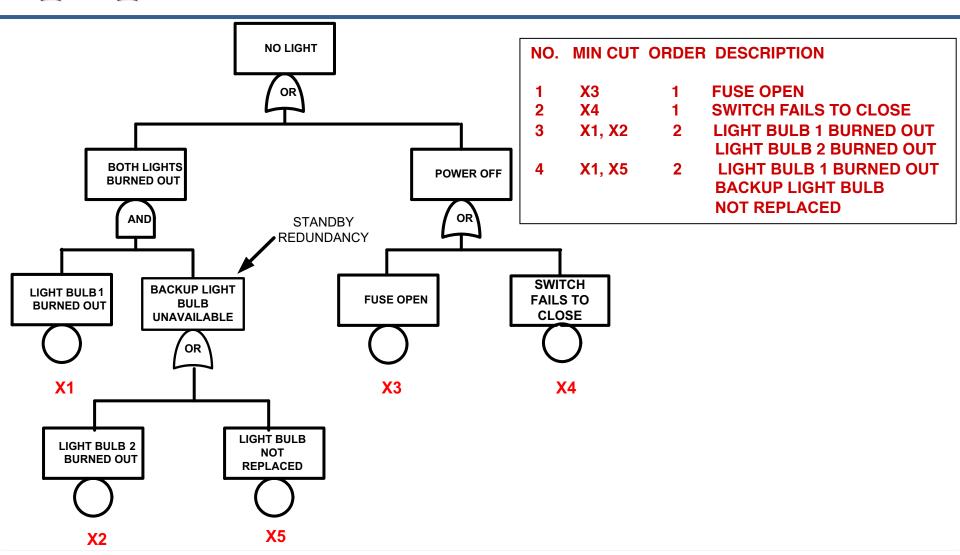


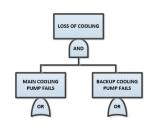

STANDBY REDUNDANCY

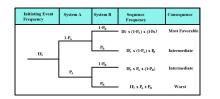


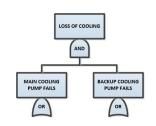

Sample Fault Tree for Standby Redundancy

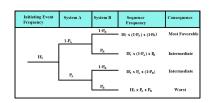


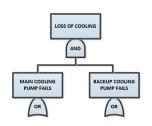

Consider active failures only

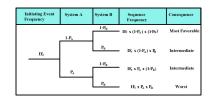

CUT SET NO.	MIN CUT SET	ORDER	DESCRIPTION
1	Х3	1	FUSE OPEN
2	X4	1	SWITCH FAILS TO CLOSE
3	X1, X2	2	LIGHT BULB 1 BURNED OUT
			LIGHT BULB 2 BURNED OUT

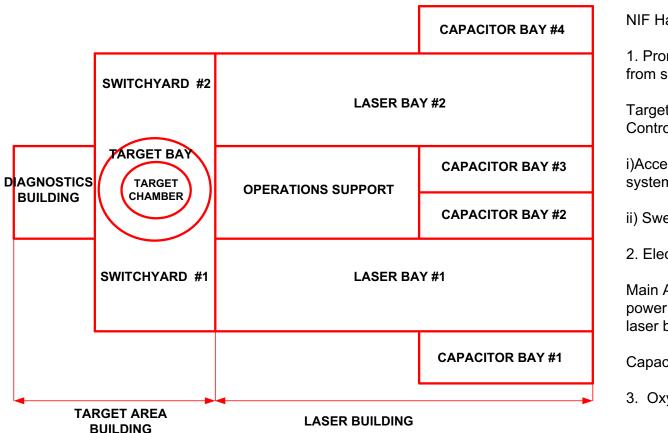

Sample Fault Tree for Standby Redundancy with Replacement Error




Two Examples LLNL – Event Tree Fault Tree Approach and one fatal criticality incident in Russia


- NIF safety interlock access control system
 - Laser Exposure (NIF National Ignition Facility)
- Fatal Criticality incident in Sarov Russia June 17 1997
- Fissile Material Handling Gloveboxes
 - Criticality


Personnel HAZARDS IN THE NIF



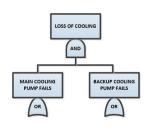
- laser light,
- high voltage
- oxygen deficiency,
- cryogenic materials,
- hazardous chemicals,
- mechanical/moving equipment/lifting,
- falls/falling objects,
- radiation,
- vacuum,
- shrapnel

National Ignition Facility

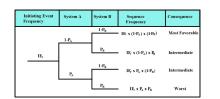
NIF Hazards

1. Prompt Radiation from shot -

Target Chamber Controls

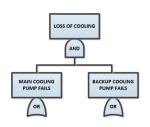

- i)Access control system
- ii) Sweep
- 2. Electrical hazards -

Main Amplifier and power amplifiers laser bays

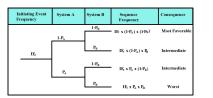

Capacitor Bays

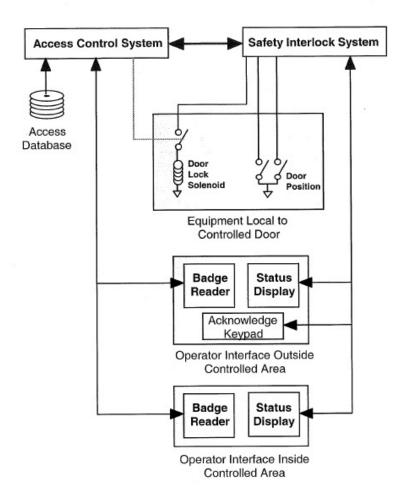
3. Oxygen Deficiency

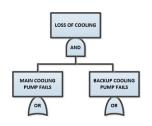
NIF -- Laser and Target Area Building (LTAB)

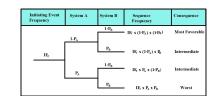


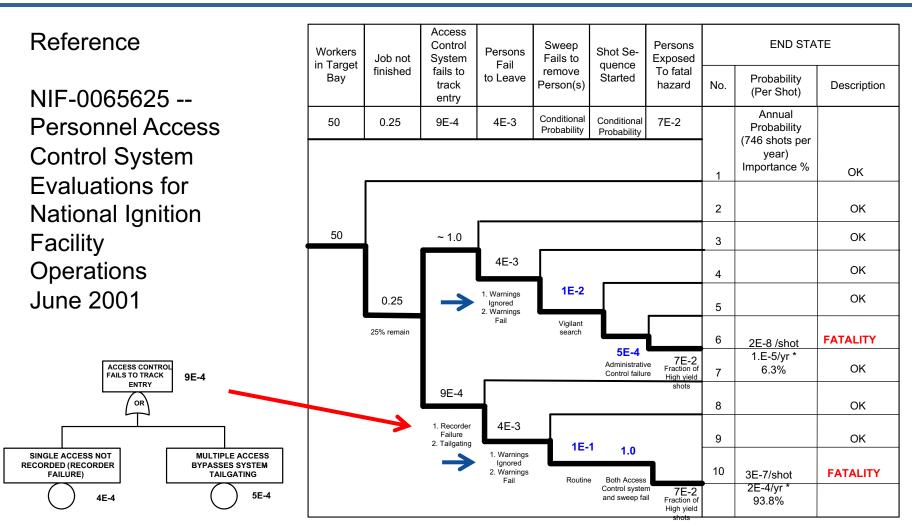
Maximum Hazard Levels in Various NIF Locations during shot sequence

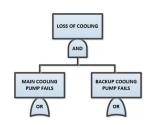


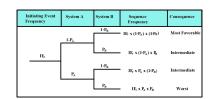

	Target Bay	Laser bays	Capacitor bays
High voltage			
Prompt radiation			
Oxygen deficiency			
Shrapnel			

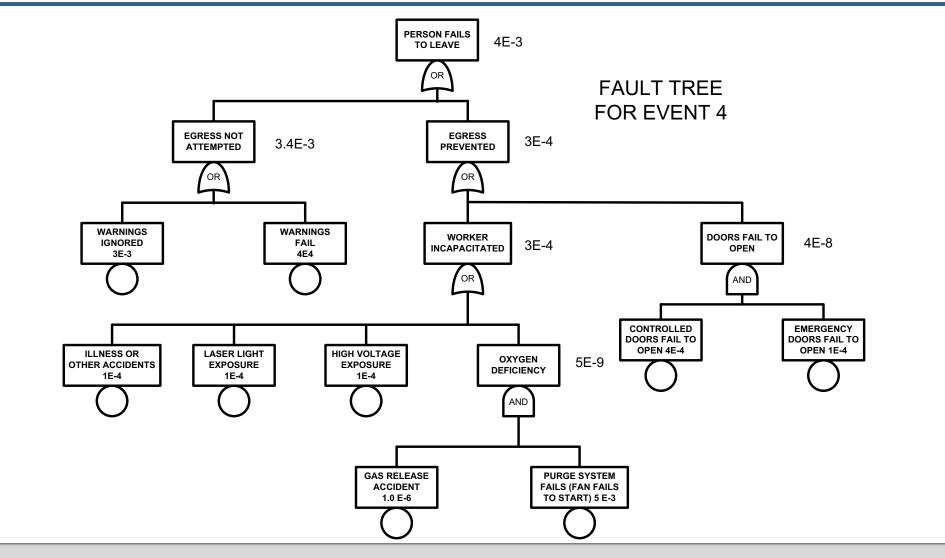

Potentially immediately lethal
Possibly lethal, need failure

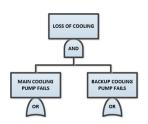

Safety Interlock System interface with Access Control System

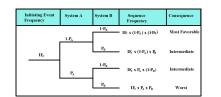


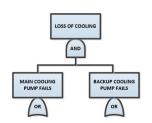



NIF Access Control Event Tree

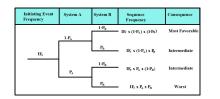


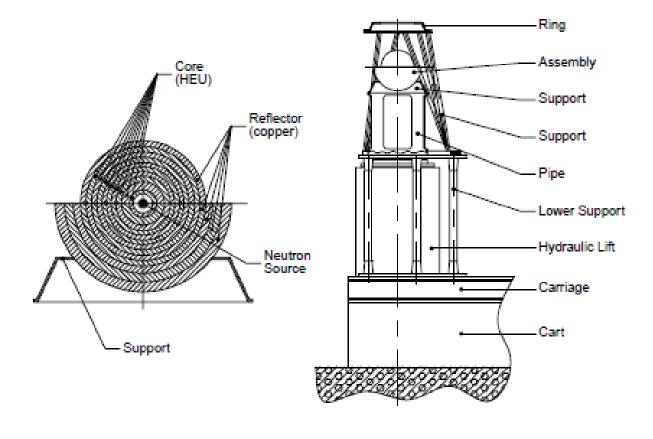



Fault Tree for Persons Failure to Leave



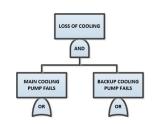
Summary of Event Tree Data

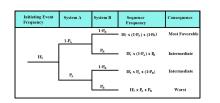



	Target Bay	Laser Bays	Capacitor Bays
Number of entries per shot sequence	50	50	10
Job not finished – workers remain in Bay prior to warnings*	.25	.5	.5
Access control fails to track entry*	9x10 ⁻⁴	9x10 ⁻⁴	5x10 ⁻³
Person fails to leave*	4x10 ⁻³	4x10 ⁻³	4x10 ⁻³
Generic sweep fails*	1x10 ⁻¹	5x10 ⁻¹	1x10 ⁻¹
Specific sweep fails*	1x10 ⁻²	1x10 ⁻¹	1x10 ⁻²
Human error - shot sequence started*	5x10 ⁻⁴	5x10 ⁻⁴	5x10 ⁻⁴
Person exposed to fatal hazard*	7x10 ⁻²	1x10 ⁻⁴	9x10 ⁻⁵
Sum of fatal sequences on event tree per shot	3x10 ⁻⁷	5x10 ⁻⁹	9x10 ⁻¹⁰
Fatalities per year for 746 shots	2x10 ⁻⁴	4x10 ⁻⁶	7x10 ⁻⁷

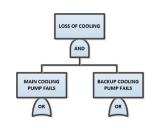
^{*} Per shot

Criticality incident in Sarov Russia June 17, 1997 involving a Physicist Zaharov



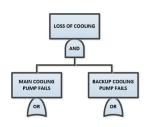

1972 logbook
inside and outside
dimensions copper
reflectors (167 and
205mm) copied
erroneously as (167 and
265 mm) used lower
copper reflector of
258mm

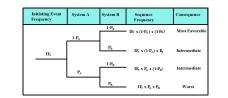
Reference --Los Alamos Document "A Review of Criticality Accidents," LA-13638

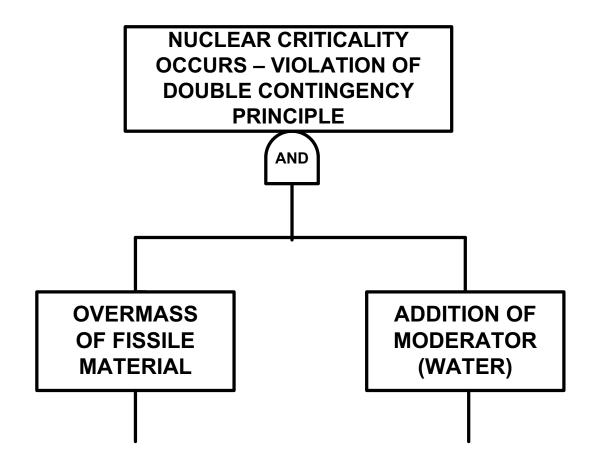

Figure 56. Accident configuration.

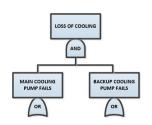
Criticality Accident and Contributing Factors

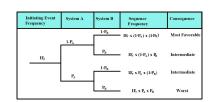
- Dropped upper copper reflector -- received dose of 4500 Rads (Neutron) and 350 Rads (gamma) died three days later in a Moscow hospital
- Contributing Factors to accidents
 - Arrogance did not submit proper papers work -- no one checked his dimensions for copper shield
 - working alone against safety operating procedures
- INTERNATIONAL ATOMIC ENERGY AGENCY publication 2001 recommendations regarding incident (1 of 4)
 - Comprehensive safety assessments enable the probabilities and magnitudes of possible accidents to be determined so that measures can be taken to prevent them or to mitigate their consequences

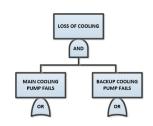

Double Contingency Principle (DCP) Criticality Safety

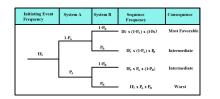

•The DCP defined in ANS 8.1 is a requirement per DOE O 420.1B.


"Process designs should incorporate sufficient factors of safety to require at least <u>two unlikely</u>, <u>independent</u>, and <u>concurrent</u> changes in process conditions before a criticality accident is possible."


- Operations will be kept sub-critical under both normal and credible abnormal conditions
- No Single credible event can result in a criticality
- Controls of multiple process parameters rather than multiple controls of a single parameter


AND GATE – NUCLEAR CRITICALITY




PROCESS PARAMETER Nuclear Criticality

- a physical property whose value affects the nuclear reactivity of a system
 - mass, density, concentration, and isotopic enrichment of fissionable material
 - the geometry, reflection, and interaction conditions of the system
 - the moderation, composition and neutron absorption characteristics of the fissionable material mixture and other system materials
- Reference **DOE-STD-3007-2007**

LLNL Procedure CSG-P-004 Process Walkthrough Questions

1. What kind of fissionable material operations are intended in the workstation (or the room, etc)?

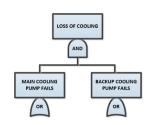
What is the feed material and does the form or shape of the material change? Is the material weapons grade or other enrichment? Is it alloyed and what density? What equipment, fixtures, and specialized containers are used in the process?

2. What are the products of the process? What are the wastes/residues of the process?

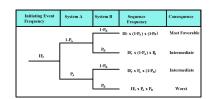
Form, shape, intermixed with other materials

How packaged?

Where do they go?


Measurements

Vaults


Other workstations

3. Are liquids used or stored in the workstation? Coolants, solvents, lubricants
Total volume of the coolant loop

Total volume in bottles or sealed equipment

CSG-P-004 Process Walkthrough Questions Cont'd

4. What equipment or fixtures are used in the workstation which will provide significant reflection?

Molds, crucibles, specialized containers, heat sinks

Shielding for personnel protection (poly or water walled vessels or wells, Pb lined containers)

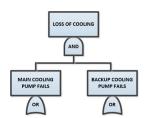
Nearby/adjacent concrete walls or other large construction

What materials, size and shape?

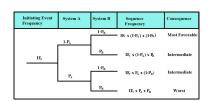
Drawings

Are there areas in the equipment or glovebox floor where liquids could collect?
 Storage wells
 Oil collection troughs

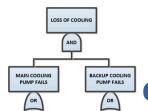
Basins in equipment

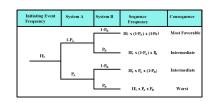

Containers, pans and trays

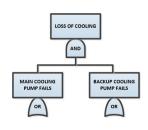
6. What are possible overmass upsets?

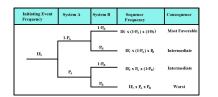

What is the maximum credible overmass?

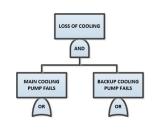
Is automated transfer equipment used which could effect the maximum overmass?

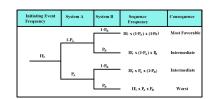

Are there connected gloveboxes which could allow inadvertent transfers?


Six specific criticality scenarios were identified for fault tree analysis

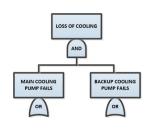

- (1) Inadvertent Criticality in a Metal System in a Workstation
- (2) Criticality in a Powder/Liquid Slurry at a Workstation
- (3) Criticality in an Aqueous System in a Workstation
- (4) Inadvertent Criticality in Storage Vaults
- (5) Criticality During Transportation
- (6) Criticality Due to Earthquake

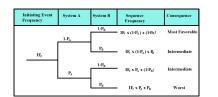

Important procedural errors that could lead to inadvertent criticality

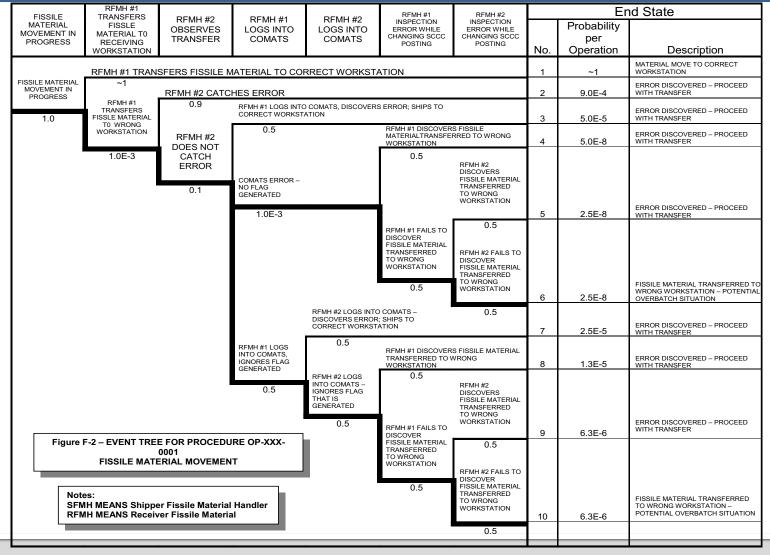

- Overbatch with approved items (handlers are same shipper and receiver, two sets of different handlers)
- Overbatch with unapproved items (handlers are same shipper and receiver, two sets of different handlers)
- Failure to conduct cleanout properly, e.g., leaving moderator in workstation -- unapproved material remains in workstation
- Failure to remove fissile material from workstation -- unapproved fissile material remains in workstation (handlers are same shipper and receiver, two sets of different handlers)
- Movement of incorrect material or equipment into a workstation
- Wrong SCCC (Standard Criticality Control Conditions) posting on workstation

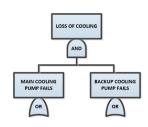

Criticality Hazards Analysis

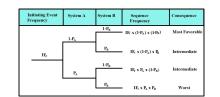
ın "	Initiating					B 1 / B 1	Fault Tree
ID#	Event	Causes	Event Consequences	Preventive Features	Mitigative Features	Relative Risk Discussion	Identification
Massive M Metal-01	Overbatch	FMH handling error, COMATS use error, COMATS error, or COMATS non-use (requires repetative procedure violations)	Increased mass at works tation, one overbatch is potentially credible, more than one overbatch is very unlikely. To attain k _{eff} >1, more than one overbatch would be necessary.	Parts handled are designed critically safe when overbatched and optimally water reflected. (Geometry and mass of parts provide the reactivity margin and structural strength of metal maintains the margin). COMATS does not provide permissive if batch limit will be exceeded. Parts are not normally placed together. Large quantity of moderating material is not present at works tation. Without moderator, more than two parts would be required to attain a critical mass.	preparation to transfer stage	Requires multiple errors by two or more FMHs thatmust be repeated to attain at least three parts in a single workstation. This highly unlikely scenario is much less likely than Metal-2 scenario, therefore this scenario was screened out	
Metal-02	Overbatch and moderate	FMH handling error, workstation CSSS limitchange error, COMATS use error, COMATS error, or COMATS non-use (requires 2 differentprocedure violations)	potentially credible. To attain keff>1, one overbatch involving a high reactivity Approved Item	Parts handled are designed critically safe when overbatched and optimally water reflected. (Geometry and mass of parts provide the reactivity margin and structural strength of metal maintains the margin). This applies to all excepthigh reactivity Approved Items which are very infrequently handled. COMATS does not provide permissive if batch limit will be exceeded. Parts are not normally placed together. Large quantity of moderating material could remain presentafter a CSSS change due to FMH error when changing the workstation condition. Without moderator, more than two parts would be required to attain a critical mass.	overbatching occur, FMHs would recognize the presence of more than one batch visually during the preparation to transfer stage and initiate corrective action. Even should the material be delivered to the workstation, having the fixture occupied (a partin the way of the new part) would queue FMH to the error before the parts are placed in close proximity. Moderator would be in container or in solid form and away from the workstation		Yes

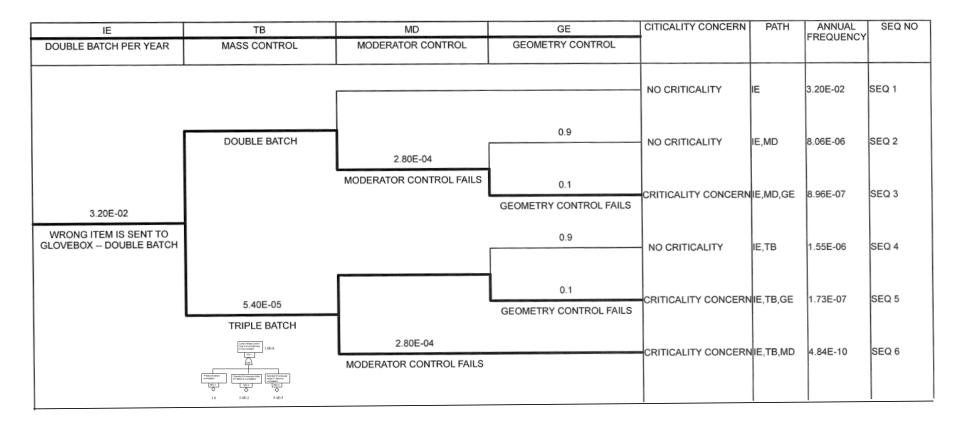

Example Application of the FT/ET Methodology to Criticality Safety

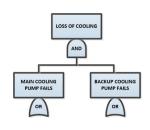

Goal: Assess criticality accident frequency for a simple fissile operation in a glovebox

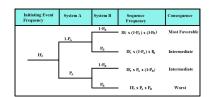

Operation Description: Bring in two metal hemi-shells and assemble them into a spherical unit

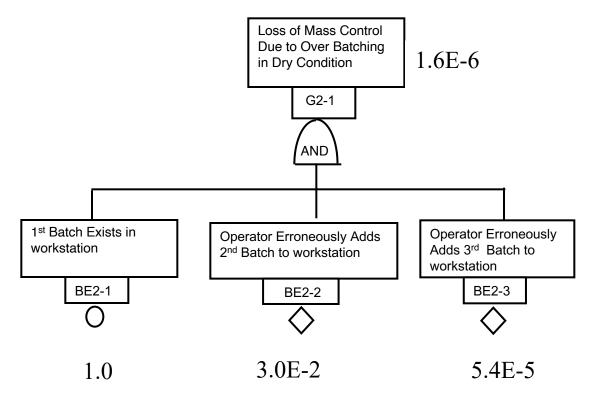

Analysis Method: Event tree with two linked fault trees to develop top event probabilities

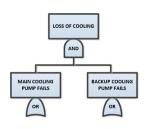

Event Tree Example for Fissile Material Movement to Wrong Glovebox



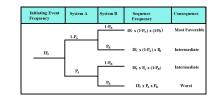


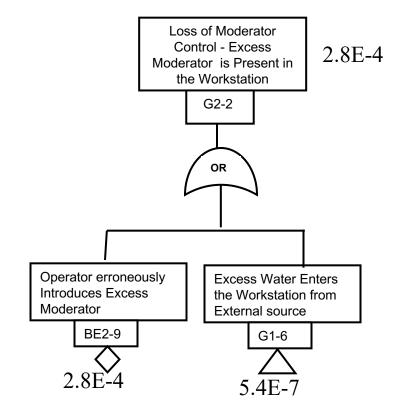

Criticality Event Tree

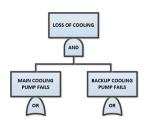




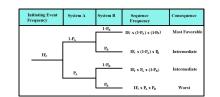
Fault Tree for Loss of Mass Control due to Over Batching in Dry Condition

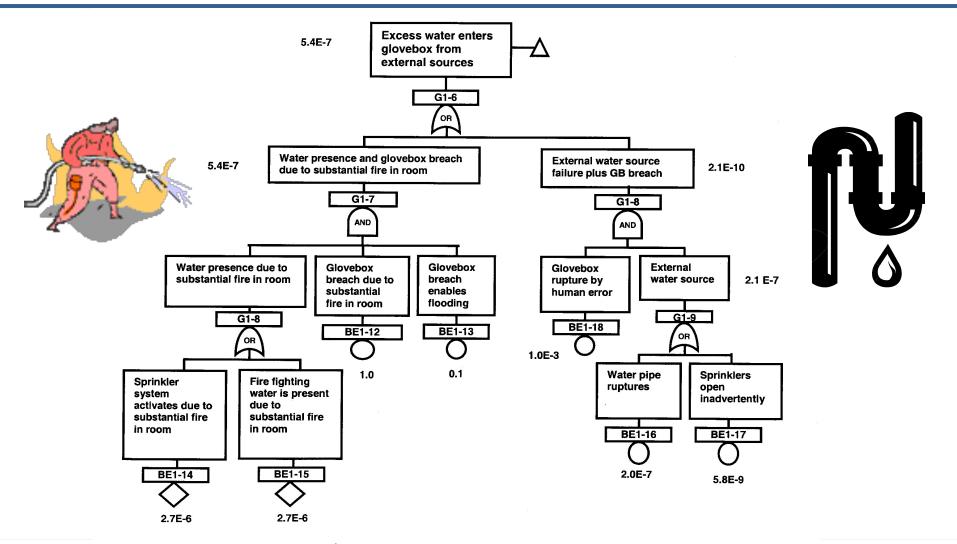


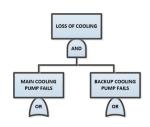


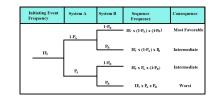


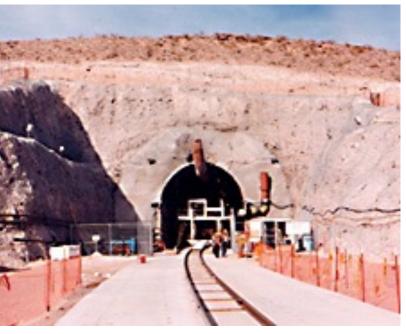
Fault Tree for Loss of Moderator Control



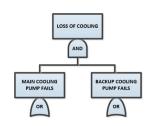


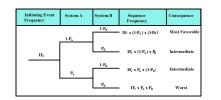


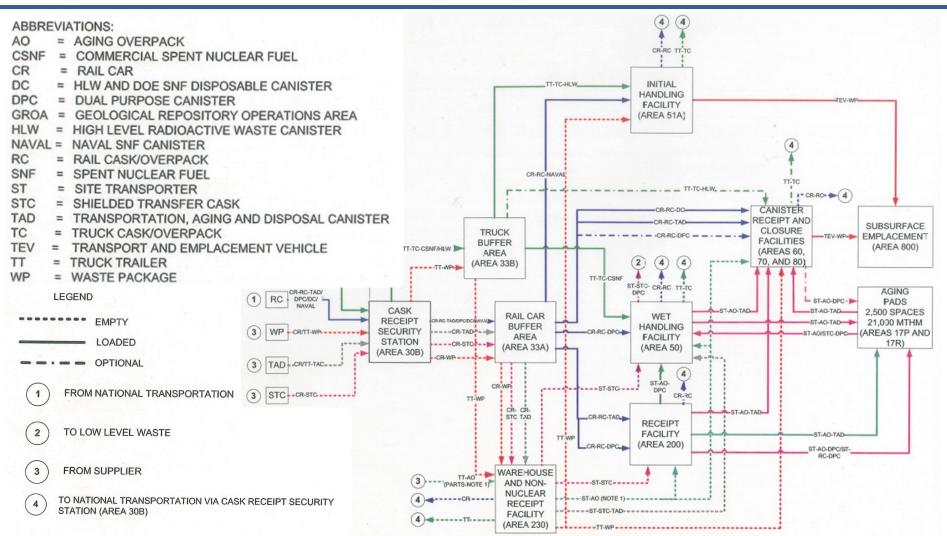

Fire Water System Fault Tree

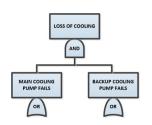


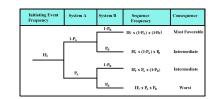
Yucca Mountain Nevada

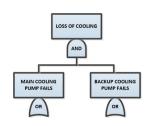

11



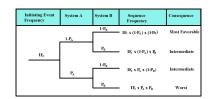

Yucca Mountain Nevada

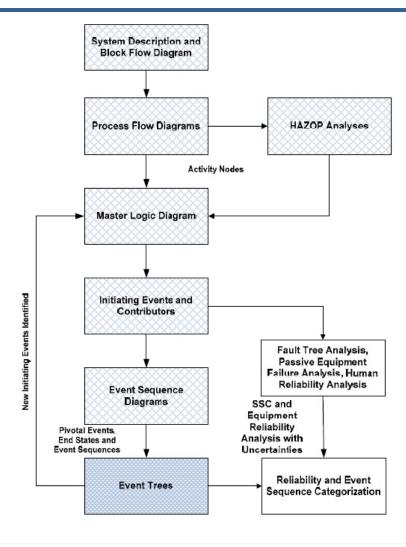

Entrance Tunnel Yucca Mountain

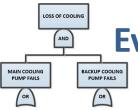

Geological Repository Operations Area (GROA)

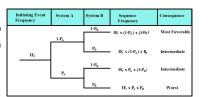


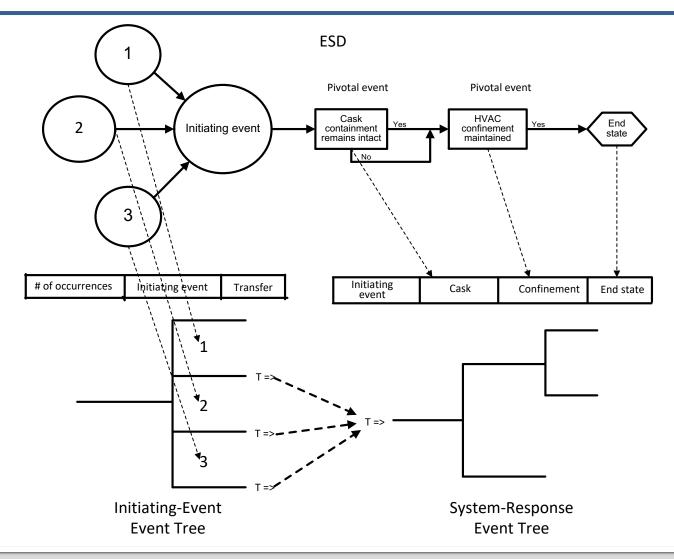
Yucca Mountain Project (YMP)

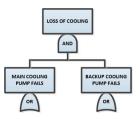


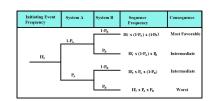

Preclosure

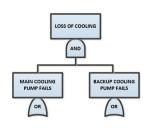

- Radionuclide containment (cask, canister or waste package)
- Confinement (e.g., HVAC)
- Wet Handling Facility (WHF) pool
- Postclosure Geologic Barriers

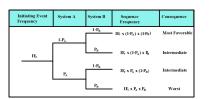

YMP Preclosure Safety Assessment Process

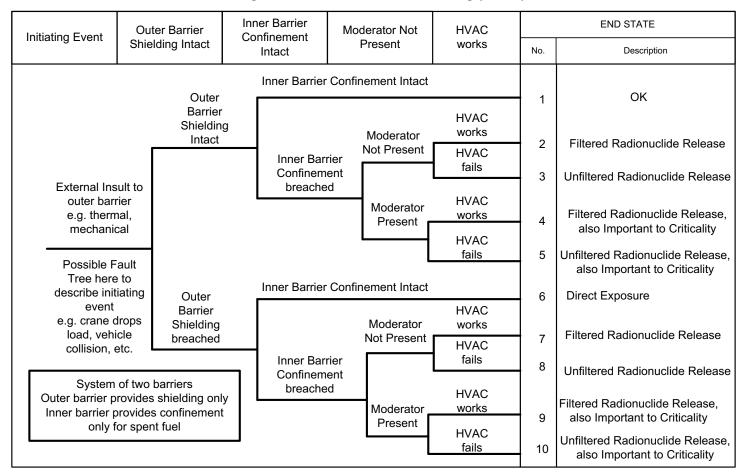


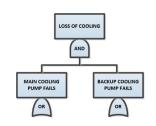



Event sequence diagram (ESD) showing relationship to event trees

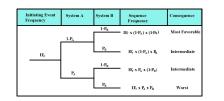



Initiating event tree example

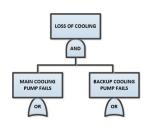

Number of canisters moved during preclosure period	Initiating events resulting in structural challenge to canister			
CANISTERS	INIT-EVENT	#		END-STATE-NAMES
		1		ок
	Drop of a ca	nister 2	T => 2	SYSTEM-RESP-EXAMPLE
	Side impact	to canister 3	T => 2	SYSTEM-RESP-EXAMPLE
	Drop of hea onto caniste		T => 2	SYSTEM-RESP-EXAMPLE
INIT-EVENT-EXAMPLE - 2008/04/09 Page 1				

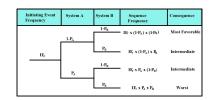


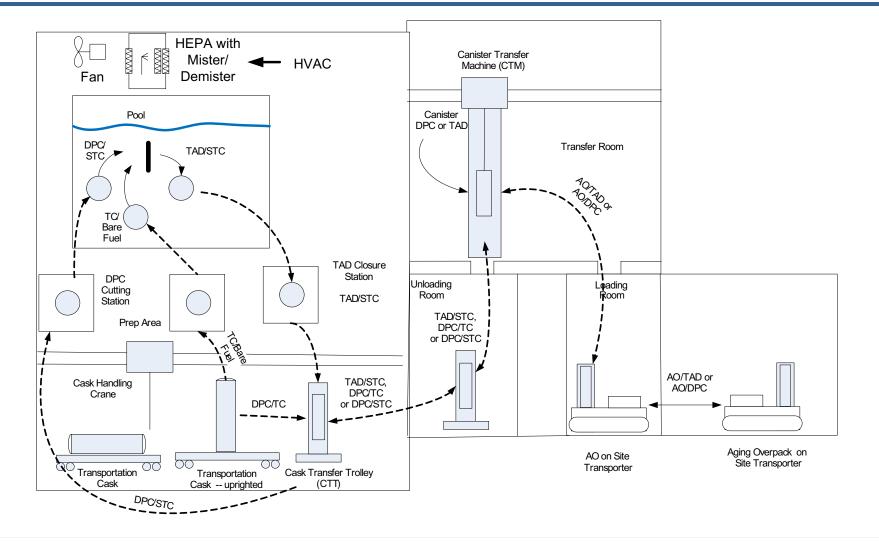
Generic Event Tree for Yucca Mountain Project

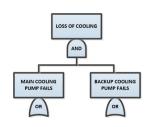


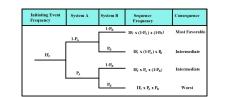
Generic Event Event for a System of Two Barriers with Moderator control and Heating, Ventilation and Air Conditioning (HVAC)

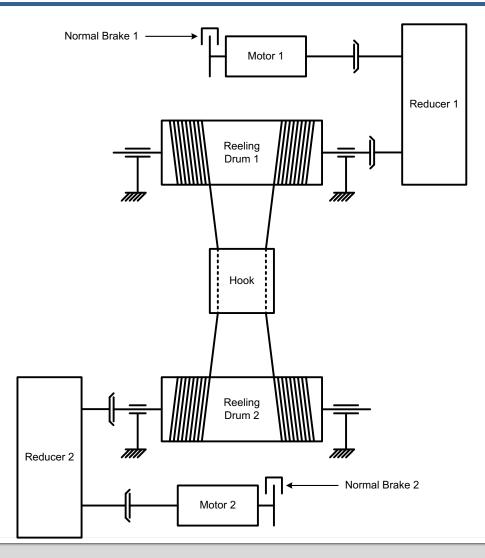


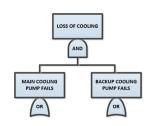

Wet Handling Facility - Preclosure YMP

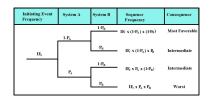


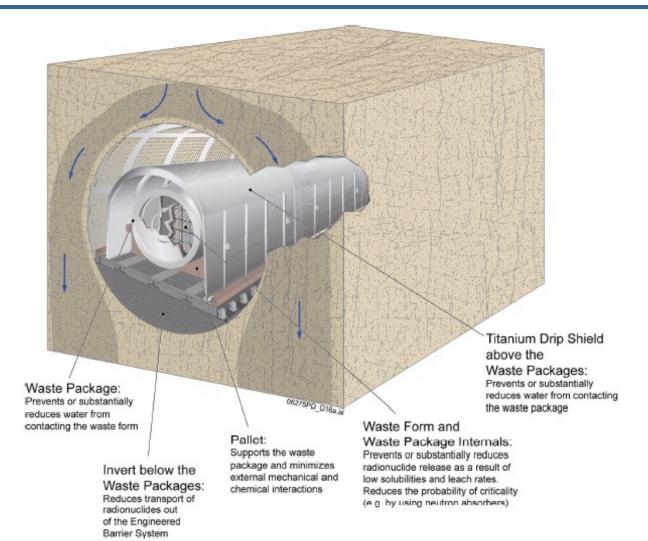

- A small percentage of spent nuclear fuel will not arrive at the repository in canisters called TADs, but will be shipped in transportation casks designed to handle individual assemblies of spent fuel rods.
- The Wet Handling Facility includes a pool of water in which spent fuel rods are removed from transportation casks, placed into TAD canisters and prepared for disposal or aging.


Wet Handling Facility -- Preclosure (YMP)






Single Failure Proof Crane



Postclosure – Engineered Barriers (YMP)

The Features of the Engineered **Barrier System** that Prevent or Limit the Movement of Water and Prevent or Substantially Reduce the Release of Radionuclides from the waste