Severe Accidents Lessons Learned

2016 July
Gary Johnson
kg6un@alumni.calpoly.edu

After the Fukushima-Daiichi event I began thinking about severe accidents

- How do they happen, how might they be prevented, role of defense in depth?
- Both IAEA and EPRI have supported this work

IAEA EPRI

<u>Training material</u> <u>Lessons learned for I&C and HSI</u>

Long overview of each event Short overview of each event

Explain basic principles Role of I&C

What, then why Role of HFE features of I&C (HSI)

Defense in depth Possible enhancements

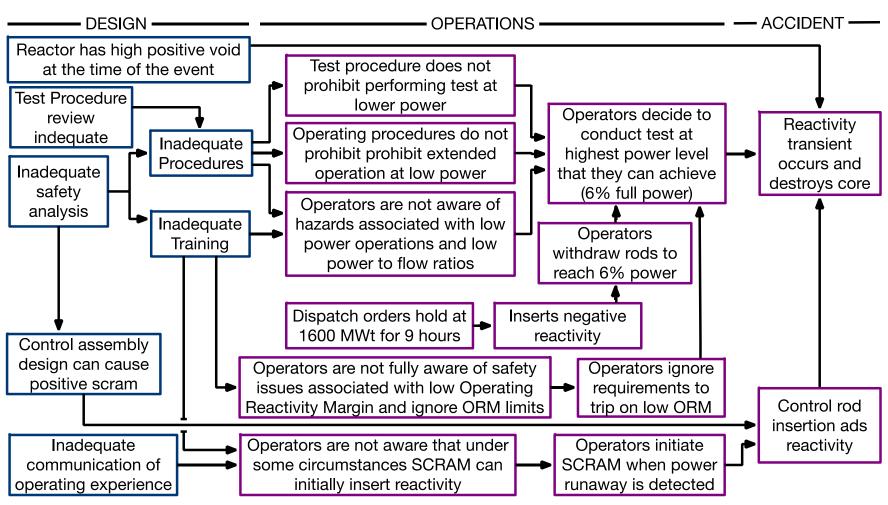
Relevance of IAEA requirements

This presentation draws from both efforts

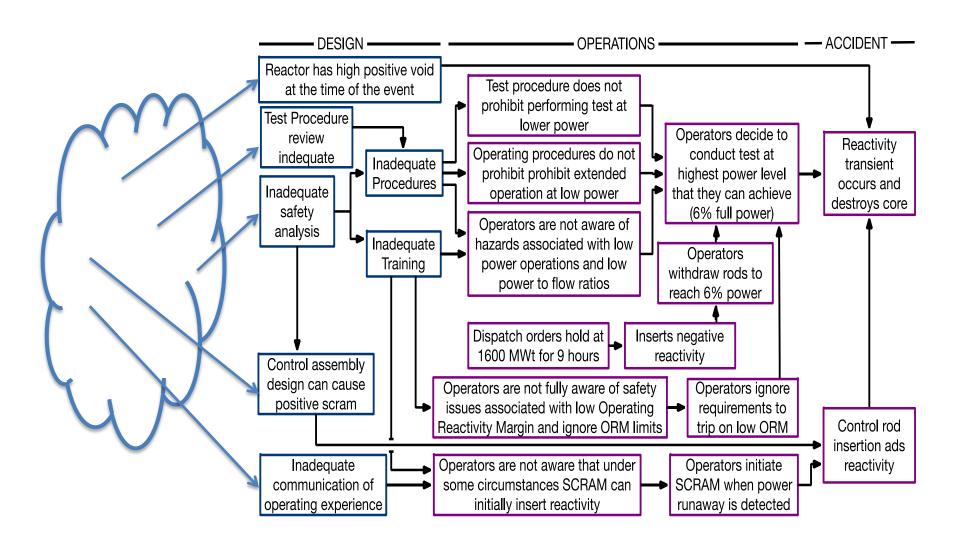
There's lots of overlap. I'll highlight the things that are unique to the EPRI report

I found 19 severe accidents

	Estimated
	INES Level
Chernobyl Unit 4	7
Fukushima Daiichi Units 1,2, & 3	7
Windscale Unit 1	5
TMI-2	5
Heat Transfer Reactor Experiment-	-3 4
NRX	4
Fermi Unit 1	4
KS 150	4
Sodium Reactor Experiment	4
Saint Laurent Unit A2	4
SL-1	4
Westinghouse Testing Reactor	4
Saint Laurent Unit A1	4
Lucens	4
Experimental Breeder Reactor 1	3
Chapelcross Unit 2	3
105 K-West	3


Types of Plants

- 4 Generation 2 LWR
- 7 Other power reactor types
- 2 Isotope Production Reactors
- 6 Test or research reactors


Countries Inve	olved
Canada	1
Japan	3
Ukraine	1
France	2
US	8
Slovakia	1
Switzerland	1
UK	2

INES = International Nuclear Events Scale
See http://www-ns.iaea.org/tech-areas/emergency/ines.asp

We can (more or less) understand the direct causes of severe accidents (Chernobyl for example)

But I don't understand the more basic causes

Severe accidents are "black swans"

Things that were unknown or thought not credible led to

Unexpected events

which

Neither plant systems nor operators* could bring under control

before

Significant fuel melt occurred

^{*}Because they didn't have adequate instrumentation, procedures, training, or systems

Consider Fukushima Daiichi

The maximum tsunami at the site was unknown Tsunamis > 6 m were considered not credible led to

Failure of plant AC and DC power
Failure to plan for extended loss of AC & DC
which

Deprived operators the information, systems, procedures and training needed to bring the plant under control before

Significant fuel melt and radiation release occurred

^{*}Because they didn't have adequate instrumentation, procedures, training, or systems

An alternative model

- They were caused by unknown-unknowns
 - For example at Fukushima-Daiichi

Known Known

A Tsunami exceeding the design basis might happen

Known Unknown

Height of maximum beyond design basis tsunami

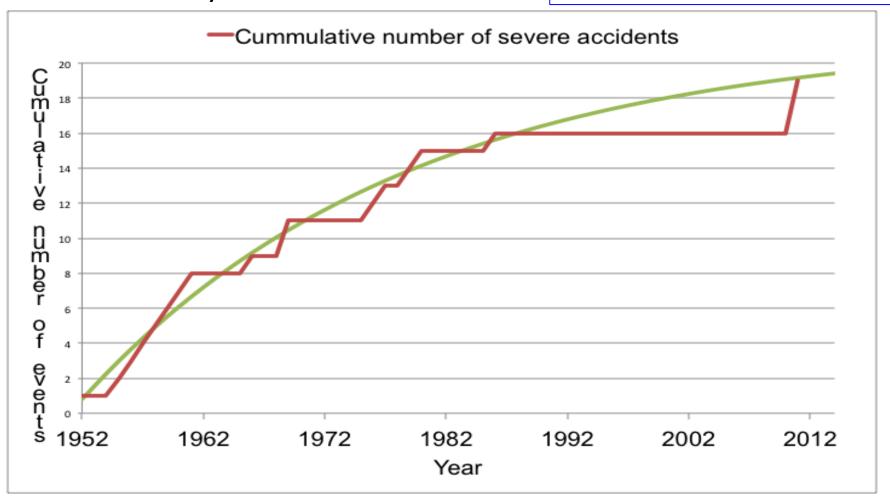
Electrical system operability after tsunami

Operators' ability to respond after failure of all AC & DC power

Unknown Unknown

Plant and operators will not be able to cope with Beyond Design Basis Tsunami

Not in EPRI scope


Yet another model

- There are always tradeoffs between safety and economics
- No one, and no organization can ever fully understand the risks and benefits of these tradeoff
- A history of successful operation tends to support a reduction of safety margins
- Eventually something bad happens

We must expect severe accidents

2 events* ≈ 10⁻⁴/Reactor Year 16000 reactor years

*In Gen 2 reactors, counting Fukushima-Daiichi as a single event

All of the accidents involved bypass of defense in depth INSAG-10 Defense in Depth Levels

			i-10 Delense in Deptil Le		
Events ordered by date	Level 1	Level 2	Level 3	Level 4	Level 5
Fukushima Daiichi U3	Inadequat	e design basis for externa	al hazards	Accident management effects of extreme extreme	ernal hazards / cooling of corium
Fukushima Daiichi U2	Inadequat	e design basis for externa	al hazards	Accident management effects of extreme ext	ernal hazards / cooling of corium
Fukushima Daiichi U1	Inadequat	e design basis for externa	al hazards	Accident management effects of extreme extreme	
Chernobyl U4		of design's hazards. Inad			disassembly
Saint Laurent A2		ame loose unexpectedly, n fission product release t	oo high to prevent dama	ge Fission Product Activ	ity
TMI-2	Poor training, procedure discipline, MCR design,	& I&C design /	symptoms of lo	ECCS and don't recognize oss of coolant/flow	core cooling
KS 150	with unreliable fuel t	emperature channels /	fuel temperature read		ture
Lucens		oflow blockage. Effects of assembly instrumentation		Automatic trip: I Fission Product Act	
Chapelcross U2	Fuel failure not dete	for detecting fuel damagected before melt due to in	· · · · · · · · · · · · · · · · · · ·	Manual trip: High Fissi Product Activ	rity
Saint Laurent A1	Training, SW-V&V, HMI, RTS setpoint inadequate	e/ Operator o	verides interlock	Automatic trip: Hi Fission Product Activ	
Fermi 1	loads caused sh	netal sheets in reactor ver eets to come loose and b	lock two fuel assemblies	containment ra	
WTR		procedures, training & fue ailure. No confinement isc		Fuel relocation and manual shutdown	
SL-1	Single rod withdrawal could cause criticality	Operator withdraws cen			Core disassembly & moderator ejection
SRE	resulting in flow bl	properties unknown ockage within core	Operators didn't inves of reactor tr	rips / investiga	ual shutdown to te fuel condition
HTRE-3	configuration sett	re to validate automatic c ings before use. Control/p	rotection interaction.	of high fuel temp	erature trip
Windscale U1	Inadequate knowledge		adequate core temperatunent only partially effective	ve.	Burning fuel removed from core
EBR-I		dure. Lack of common op RTS set point for high pow		>	al trip: Short period
105 KW		f temporary changes and reactor trip on low flow in		Automatic trip: hig	
NRX	Inadequate safety analy procedures & I&C.			fully insert after scram.	Manual trip: diverse shutdown system

We've done a good job of limiting the public's radiation exposure

- Five events involved offsite emergency response
- No deterministic effects of radiation exposure to the public
- Only Chernobyl had identifiable stochastic effects
 - ~ 6000 additional thyroid cancers
 - ~15 fatalities
- 14 events had low or no offsite release
- Two events killed operators

At two sites radiation exposure was not the most important consequence

- Chernobyl and Fukushima Daiichi
- At Fukushima Daiichi for example
 - 210,000 people were evacuated
 - A 2013 survey of 1/3 of the evacuees found:
 - 16,000 people were still living in evacuation shelters
 - 8,000 considered themselves socially disabled due to traumatic symptoms, and
 - 17,000 thought that they or their offspring would suffer health effects from radiations exposure.
 - About 60 hospital patients died because of difficulties with evacuation
 - About 300 km² of land removed from use for a long time
 - Serious economic consequences
- We must prevent this in the future

I&C or HSI issues contributed to <u>every event</u> (EPRI results)

Inadequate functionality 6 events

I&C availability
 7 events

Design issues
 14 events

HSI issues
 8 events

• I&C lifecycle issues 5 events

- Lack of data for investigation 5 events
 - Such issues usually result from incomplete or incorrect requirements
- Most events involved more than one issue

Contributions to Severe Accidents	Fukuskii Daiici	Three	Wile Island	Sall, Chernob	Lauren A		Sallie 150	Lauren 2						Windscare			10 S6	Au Fu	mber of 1550	
Contributions to Severe Accidents					Z Cell	,\v Z\	ecros		Kern,		SK S	£ 4		oscal Secon	6 / E	05/05/	至		300/	المارة المارة
Appendix	A	В	c	D	E	F	G	Н	J	K		М	ĺΝ	0	P	a	R	s	ÌΤÌ	#
Functionality issues	X			Х		'	0	X	 ,	Х		101	X	х		<u> </u>	ı.			4
Indication of possible fuel failure				^				X		X			X	X						4
Coolant inventory indication	х			х		-		<u> </u>		 ^									\vdash	2
Loose parts monitoing systems	 ^			<u> </u>		\vdash				х							-	-	$\vdash \vdash \vdash$	1
Monitoring of I&C operability										<u> </u>				х					$\vdash \vdash \vdash$	1
I&C systems availability issues	х	х	х		х							х			х				х	7
Robust instruments for SAMG	X	х	х																X	4
Power failure sequence	X	<u> </u>																		1
Robust control power	x	х	х																\vdash	3
Robust instrument air	x	x	x																	3
Release monitoring															х					1
High range portable monitors					×							х								2
I&C design issues	х	х	х	х	х		х	х	х	х	х			х	х	х	х			14
Instrument response time					х			х	х							х				4
Instrument sensitivity									х	х										2
Instrument range				х																1
System unreliability							х				х									2
Parameter spatial delpendence								х							х					2
Level measurement	х	х	х																	3
Fukushima instrument behaviour	х	х	х																	3
Fukushima thermocouple	х	х	х																	3
Communicaitons	х	х	х																	3
Redundancy - lack of																	х			1
Redundancy - implementation																х				1
Diversity - lack of														х						1
Control protection interaction														х						1
Indirect measurements				Х																1

Contributions to Severe Accidents	Fukushii Dajicii	Three ma Dalla	Mile Island	Sain, Chernoby,	int lourent	(KS; \	Salli, 150	Tat Laurent 5	Inc.	Fermi		SKE	cti.	TIR.	Windscare	F. E.	105	ED Spe	Tun Fuel You	The of 1550	ile's
Human-system interface issues				х	х				х		Х	х	х	х					х		8
Display location				х								х		х							3
Operator aids				х	х						Х										3
Range				х															х		2
Present reasons for interlocks									х												1
Too many hands needed																			х		1
Inadvertent operation													х						х		2
Data for accident reconstruction	х	х	х										х				х				5
Loss of power	х	х	х																		3
Turned off													х								1
Failed channel																	х				1
I&C lifecycle issues									х						х	х	Х	х			5
Sensor location															х	х					2
Setpoint suitability									х												1
Setpoint verification																		х			1
Configration data V&V									х						х						2
Surveillance tests																	х				1
Configuration management															х						1
Validation of modifications															х						1
Number of Issues	10	8	8	6	3	0	1	3	3	2	4	2	3	2	8	3	4	2	3	1	#

Additional issues that I am investigating

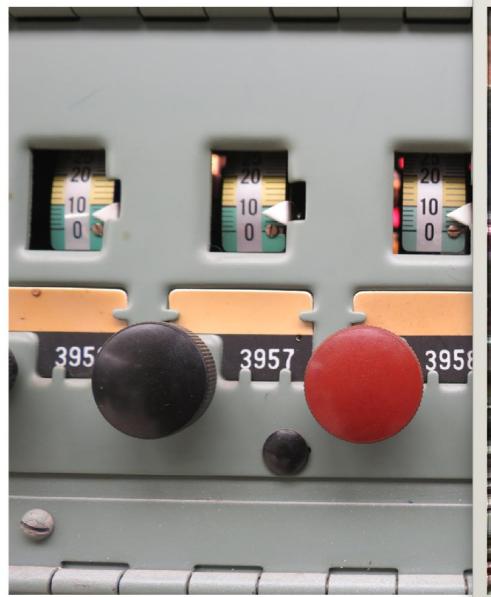
Inadequate knowledge of the plant 13events

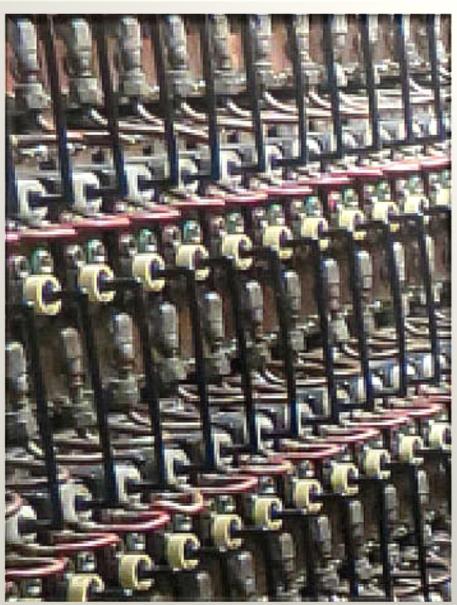
Procedure issues
 12 events

Operational discipline issues 6 events

Training issues
 9 events

This bit is still work in progress


Very Preliminary!!


	٠ ,		\		_		_	_	,					_	_			
Human Factors Contributions to Severe Accidents	Lushing Dalich	Che, Che, 2	three thoop	Nile III A	Island	Chaper 150	int louis 1		Ferm	S. S.	38.5	Z	HIRE	Vindscale	EBR	TO TO	Zumbei ZRX	9
	Α	В	С	D	Ε	F		Н	I J	K	L	М	N	0	Р	Q	R	S
Knowledge issues	х	х	х	х		х	х	х	х		х	х	х		х	х		
Lack of basic knowledge				х		П	х		х		х				х	П		
Recognized hazards discounted	х	х	х			х						х				П		
Failure to communicate safety issues				х									х		х			
Procedure issues	х	х	х	х		х	х	х		х			х		х	х	х	
Failure to adress known issues	х	х	х			х	х									П		
Not informed by analysis				х				х							х		х	
Lack of shutdown criteria						П				х			х			х		
Operational dicipline issues				х		х			x		х					х	х	х
Operational dicipline				х		х			x		х					х		Х
Inadequate oversight of operations				х		х											х	
Failure to disable or lock out manual controls that should not be operated																		х
Training issues	х	х	х	х		х	х			х			х		х			
Incomplete training	х	х	х	х		х	х			х			х		х			
Lack of system familarity				х											х			
Inadequate communicaiton of lessons learned						х				х								

Alternative means to provide information or control during severe accidents (EPRI results)

- Inherently robust instruments
 - New technology
 - Old technology
- Robotics
 - To work where operators can't
 - Monitor conditions, robotically actuate equipment
 - To enhance operator abilities
 - E.g., environmental survey
 - Consider providing robots that can assist operators during both normal and abnormal operations

Robust pressure indication at B reactor

Additional conclusions in the EPRI report

- Only one event was caused by CCF of I&C components
- Most I&C contributions to accidents did not result from component failures
 - Caused instead by inadequate design or maintenance
- Most of the I&C that contributed to the accidents was NON-safety
- In a several events the actions of maintenance or field operators strongly contributed to the accident
- Fukushima Daiichi and (perhaps) TMI-2 are the only events where environmental qualification was important

My recommendations to EPRI

- Provide robust instruments to show operators the status of fuel cooling and containment integrity
- Investigate methods for making I&C equipment robust
- Provide alternative means for powering minimum set of devices needed to establish core cooling
- Look again for better alternatives to ΔP level sensing
- Understand instrument performance at Fukushima-Daiichi
- Seek direct means to confirm continued sub-criticality after core melt
- Follow TEPCO's experience with robots to better understand what is needed and what works.

- You can get the EPRI report by going to www.epri.com and searching for 3002005385
- The IAEA work might be available later this year. I'll let you know.